Before we begin, we import our favorite modules, as always.
import collections
import warnings
import numpy as np
# The MCMC Hammer
import emcee
# Import plotting tools
import matplotlib.pyplot as plt
import seaborn as sns
# Magic function to make matplotlib inline; other style specs must come AFTER
%matplotlib inline
# This enables high res graphics inline (only use with static plots (non-Bokeh))
# SVG is preferred, but there is a bug in Jupyter with vertical lines
%config InlineBackend.figure_formats = {'png', 'retina'}
# JB's favorite Seaborn settings for notebooks
rc = {'lines.linewidth': 2,
'axes.labelsize': 18,
'axes.titlesize': 18,
'axes.facecolor': 'DFDFE5'}
sns.set_context('notebook', rc=rc)
sns.set_style('darkgrid', rc=rc)
# Suppress future warnings
warnings.simplefilter(action='ignore', category=FutureWarning)
We will generate some sample distributions to sample using MCMC. We will consider an exponential distribution, a Gaussian, the sum of two Gaussians, and a distribution with a long tail. We choose these to illustrate how various choices of the credible region will be reported.
def log_exp(x, lam):
"""
Log of unnormalized exponential distribution with a given lambda.
"""
if x < 0:
return -np.inf
return -lam * x
def log_gauss(x, mu, sigma):
"""
Log of unnormalized exponential distribution with a given mu, sigma.
"""
return -(x - mu)**2 / 2.0 / sigma**2
def log_sum_of_gauss(x, mu_1, mu_2, sigma_1, sigma_2):
"""
Log of sum of Gaussians.
"""
gauss_1 = np.exp(-(x - mu_1)**2 / 2.0 / sigma_1**2) \
/ np.sqrt(2.0 * np.pi) / sigma_1
gauss_2 = np.exp(-(x - mu_2)**2 / 2.0 / sigma_2**2) \
/ np.sqrt(2.0 * np.pi) / sigma_2
return np.log(gauss_1 + gauss_2)
def log_longtail(x, mu, sigma):
"""
Log of unnormalized lognormal distribution.
"""
if x <= 0.0:
return -np.inf
return np.log(x / (x + 5.0)**5)
We'll use MCMC to sample these to get chains.
# Parametrize dists
lam = 1.0
mu = 1.0
sigma = 0.25
mu_2 = 3.0
sigma_2 = 0.5
# Set up MCMC parameters
n_dim = 1 # number of parameters in the model
n_walkers = 10 # number of MCMC walkers
n_burn = 500 # "burn-in" period to let chains stabilize
n_steps = 5000 # number of MCMC steps to take after burn-in
# Seed random number generator for reproducibility
np.random.seed(42)
# Generate random starting points for walkers.
# p0[i,j] is the starting point for walk i along variable j.
p0 = np.empty((n_walkers, n_dim))
p0[:,0] = np.random.uniform(0.1, 2.0, n_walkers)
# Set up the EnsembleSampler instances
sampler = 4 * [None]
names = ['exponential', 'Gaussian', '2 Gaussians', 'long tail']
sampler[0] = emcee.EnsembleSampler(n_walkers, n_dim, log_exp, args=(lam,))
sampler[1] = emcee.EnsembleSampler(n_walkers, n_dim, log_gauss,
args=(mu, sigma))
sampler[2] = emcee.EnsembleSampler(
n_walkers, n_dim, log_sum_of_gauss, args=(mu, mu_2, sigma, sigma_2))
sampler[3] = emcee.EnsembleSampler(n_walkers, n_dim, log_longtail,
args=(mu, sigma))
# Do the burn-ins and samples
for i in range(4):
pos, prob, state = sampler[i].run_mcmc(p0, n_burn, storechain=False)
sampler[i].reset()
pos, prob, state = sampler[i].run_mcmc(pos, n_steps)
# Make it a tuple to avoid mutability
sampler = tuple(sampler)
Let's look at what we got from MCMC.
fig, ax = plt.subplots(2, 2, figsize=(8, 8))
sps = [(0,0), (0,1), (1,0), (1,1)]
for i in range(4):
# In case of long tail, only keep smaller values
inds = sampler[i].flatchain[:,0] < 25.0
# Make histogram
n, b, p = ax[sps[i]].hist(sampler[i].flatchain[inds,0], histtype='step',
color='black', normed=True, bins=100, lw=1)
# Plot labeling
ax[sps[i]].set_xlabel(r'$x$', fontsize=14)
ax[sps[i]].set_title(names[i])
plt.tight_layout()
We will consider three commonly used ways of plotting a value plus error bar. We will use a 95% credible region for this demonstration.
We'll start by computing the mean, standard deviation, median, and quantiles, since these are easy to compute with NumPy.
# Compute mean and std.
means = np.empty(4)
stds = np.empty(4)
for i in range(4):
means[i] = sampler[i].flatchain[:,0].mean()
stds[i] = sampler[i].flatchain[:,0].std()
# Compute quantile credible regions (use np.percentile)
perctiles = np.empty((4, 3))
for i in range(4):
perctiles[i,:] = np.percentile(sampler[i].flatchain[:,0],
[2.5, 50, 97.5])
Computation of the HPD is a little trickier. The function below will compute the HPD interval. The idea is that we rank-order the MCMC trace. We know that the number of samples that are included in the HPD is 0.95 times the total number of MCMC sample. We then consider all intervals that contain that many samples and find the shortest one.
def hpd(trace, mass_frac) :
"""
Returns highest probability density region given by
a set of samples.
Parameters
----------
trace : array
1D array of MCMC samples for a single variable
mass_frac : float with 0 < mass_frac <= 1
The fraction of the probability to be included in
the HPD. For example, `massfrac` = 0.95 gives a
95% HPD.
Returns
-------
output : array, shape (2,)
The bounds of the HPD
"""
# Get sorted list
d = np.sort(np.copy(trace))
# Number of total samples taken
n = len(trace)
# Get number of samples that should be included in HPD
n_samples = np.floor(mass_frac * n).astype(int)
# Get width (in units of data) of all intervals with n_samples samples
int_width = d[n_samples:] - d[:n-n_samples]
# Pick out minimal interval
min_int = np.argmin(int_width)
# Return interval
return np.array([d[min_int], d[min_int+n_samples]])
With this function in hand, we can compute the HPD and get the modes and error bars.
# Compute HPD credible regions
hpds = 4*[None]
modes = np.empty(4)
for i in range(4):
hpds[i] = hpd(sampler[i].flatchain[:,0], 0.95)
modes[i] = sampler[i].flatchain[np.argmax(sampler[i].flatlnprobability)]
Now that we have everything in hand, we can make our plots with error bars.
# Show results on plots
fig, ax = plt.subplots(2, 2, figsize=(8, 8))
for i in range(4):
# In case of long tail, only keep smaller values
inds = sampler[i].flatchain[:,0] < 25.0
# Make histogram
n, b, p = ax[sps[i]].hist(sampler[i].flatchain[inds,0], histtype='step',
color='k', normed=True, bins=100, lw=1)
# Get y-value for Gaussian error bar
ylims = ax[sps[i]].get_ylim()
y_gauss = ylims[1] / 2.0 + ylims[1] * 0.1
# Get y-value for quantile error bar
y_quantile = ylims[1] / 2.0
# Get y-value for HPD error bar
y_hpd = ylims[1] / 2.0 - ylims[1] * 0.1
# Plot Gaussian error bar
dot, = ax[sps[i]].plot(means[i], y_gauss, 'o')
ax[sps[i]].plot([means[i] - 1.96 * stds[i], means[i] + 1.96 * stds[i]],
[y_gauss, y_gauss], '-', color=dot.get_color(),
label='mean/std')
# Plot quantile error bar
dot, = ax[sps[i]].plot(perctiles[i,1], y_quantile, 'o')
ax[sps[i]].plot([perctiles[i,0], perctiles[i,2]],
[y_quantile, y_quantile], '-', color=dot.get_color(),
label='quantile')
# Plot HPD error bar
dot, = ax[sps[i]].plot(modes[i], y_hpd, 'o')
ax[sps[i]].plot([hpds[i][0], hpds[i][1]], [y_hpd, y_hpd], '-',
color=dot.get_color(), label='mode/HPD')
# Plot labeling
ax[sps[i]].set_xlabel(r'$x$', fontsize=14)
ax[sps[i]].set_title(names[i])
ax[sps[i]].set_ylim(ylims)
# Put in a legend
ax[0,0].legend(loc='upper right')
plt.tight_layout()
We see that method 1 does not respect bounds on the posterior, nor any asymmetry. The other two methods, in my opinion, have similar value. The quantile approach is very easy to interpret, definitely more so than mode + HPD. However, it is nice to know the most probable value, so HPD has this going for it. In any case, attempting to describe a multi-modal posterior with an error bar is misleading and futile.
One issue that may be worrying you is how to report the asymmetric error bars in text. For the example of the long tailed, we may report the mode with HPD as $1.25^{+13.56}_{-1.22}$.