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2 Parameter estimation from repeated measurements

In the last lecture, we learned about Bayes’s theorem as a way to update a hypothesis in light
of new data. We use the word “hypothesis” very loosely here. Remember, in the Bayesian
view, probability can describe the plausibility of any proposition. The value of a parameter
is such a proposition. In this lecture, we will learn about how to do a Bayesian estimate of a
parameter.

2.1 Bayes’s theorem as applied to simple parameter estimation

We will consider one of the simplest examples of parameter estimation. Let’s say we measure a
parameter µ in multiple independent experiments. This could be beak depths of finches, fluo-
rescence intensity on a cell, dissociation constant for two bound proteins, etc. The possibilities
abound. You can have whatever your favorite measurement is in mind during this analysis.

Our measurements of this parameter are D = {x
1

, x
2

, . . . xn}. Our “hypothesis” in this case,
is the value of the parameter µ. So, we wish to calculate P (µ | D, I), the posterior probability
distribution for the parameter µ, given the data. Values of µ for which the posterior probability
is high are more probable (that is, more plausible) than those for which is it low.

To compute the posterior probability, we use Bayes’s theorem.

P (µ | D, I) =
P (D | µ, I)P (µ | I)

P (D | I) . (2.1)

Since the evidence, P (D | I) does not depend on the parameter of interest, µ, it is really just
a normalization constant, so we do not need to consider it explicitly. We now have to specify
the likelihood P (D | µ, I) and the prior P (µ | I).

2.2 The likelihood

To specify the likelihood, we have to ask what we expect from the data, given a value of µ. If
there are no errors or confounding factors at all in our measurements, we expect xi = µ for all
i. In this case

P (D | µ, I) =
Y

i2D

�(xi � µ), (2.2)

the product of Dirac delta functions. Of course, this is really never the case. There will be
some errors in measurement and/or the system has variables that confound the measurement.
What, then should we choose for our likelihood?
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This question is made sharper if we think about the likelihood in terms of the statistical
model we defined in the last lecture. It is the probability distribution that describes how the
data relate to the parameter we are trying to measure. Indeed, specifying the likelihood is part
of the modeling process. In Tutorial 3a, we will learn more about probability distributions, but
for now, we will introduce one useful distribution to use in our analyses.

2.3 The Gaussian distribution

A Gaussian, or Normal, probability distribution has a probability density function (PDF) of

P (x | µ, �) = 1p
2⇡�2

exp

⇢
�(x� µ)2

2�2

�
. (2.3)

The parameter µ is called the mean of the distribution and �2 is the variance, with � being
called the standard deviation. Importantly, the mean and standard deviation in this context
are names of parameters of the distribution; they are not what you compute directly from data.

The central limit theorem says that any quantity that emerges from a large number
of subprocesses tends to be Gaussian distributed, provided none of the subprocesses is very
broadly distributed. We will not prove this important theorem, but we will make use of it
when choosing likelihood distributions.

Indeed, in the simple case of estimating a single parameter where many processes may con-
tribute to noise in the measurement, the Gaussian distribution is a good choice for a likelihood.6

More generally, the multi-dimensional Gaussian distribution for x = (x
1

, x
2

, · · · , xn) is

P (x | µ,�) = (2⇡)�
n
2
�
det�2

�� 1
2 exp

⇢
�1

2
(x� µ)T · (�2)�1 · (x� µ)

�
, (2.4)

where �2 is a symmetric positive definite matrix called the covariance matrix. If o↵-diagonal
entry (�2)ij is nonzero, then xi and xj are correlated. In the case where all xi are independent,
all o↵-diagonal terms in the covariance matrix are zero, and the multidimensional Gaussian
distribution reduces to

P (x | µ,�) =
nY

i=1

1p
2⇡�2

i

exp

⇢
�(xi � µ)2

2�2

i

�
, (2.5)

6
It is also the maximal entropy distribution for a system with well-defined first and second moments,

but we will not talk about entropy in this class.
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where �2

i is the ith entry along the diagonal of the covariance matrix. This is the variance
associated with measurement i. So, if all independent measurements have the same variance,
the multi-dimensional Gaussian reduces to

P (x | µ, �) =
✓

1

2⇡�2

◆�n
2

exp

(
� 1

2�2

nX

i=1

(xi � µ)2
)
. (2.6)

2.4 The likelihood revisited: and another parameter

The Gaussian distribution is a good choice for our likelihood for repeated measurements, and we
will use it for the likelihood for our present problem of estimating a parameter form repeated
measurements. We have to decide how the measurements are related to specify how many
entries in the covariance matrix we need to specify as parameters. It is often the case that the
measurements are independent and identically distributed (i.i.d.), so that only a single variance,
�2, is specified. So, we choose our likelihood to be

P (D | µ, �, I) =
✓

1

2⇡�2

◆n
2

exp

(
� 1

2�2

X

i2D

(xi � µ)2
)
, (2.7)

with n = |D|. By choosing this as our likelihood, we are saying that we expect our measurements
to have a well-defined mean µ with a spread described by the variance, �2.

But wait a minute; we now have another parameter, �, beyond the one we’re trying to
measure. So, our model (model 3) has two parameters, and Bayes’s theorem now reads

P (µ, � | D, I) =
P (D | µ, �, I)P (µ, � | I)

P (D | I) . (2.8)

After we compute the posterior, we can still find the probability distribution we are after by
marginalizing.

P (µ | D, I) =

Z 1

0

d� P (µ, � | D, I). (2.9)

2.5 Choice of prior

Because the evidence P (D | I) is entirely determined by the likelihood, prior, and normalization
condition of the posterior, we need only to specify the likelihood and prior to get the posterior.
We have chosen a Gaussian distribution for our likelihood, so now we need to specify P (µ, � | I).
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The prior encodes what we know about the parameters before the experiments. The prior may
be informed by previous experiments, as we discussed in section 1.9. But what if we know
nothing?

One assumption we could make is that µ and � are independent. In this case,

P (µ, � | I) = P (µ | I)P (� | I). (2.10)

Now, we have to decide on prior probabilities for µ and �. Our goal is to choose uninformative
priors, i.e., we want to claim maximal ignorance in our choice of prior probability when we
have to prior information.

For µ, we will choose a uniform prior, meaning that all values are equally likely.

P (µ | I) =

8
<

:

(µ
max

� µ
min

)�1 µ
min

< µ < µ
max

,

0 otherwise
(2.11)

We have put bounds on the allowed values of µ. You may argue that this is informative; we
have chosen bounds. We intentionally choose the bounds to be so far away from the peak of the
likelihood that the posterior is vanishingly small at the bounds. Thus, the parameters µ

min

and
µ
max

are arbitrary and serve only to ensure the P (µ | I) is a proper probability distribution.7

For the parameter �, the choice is not quite so simple. First, we know that � > 0 by
construction. We also note that we could have chosen to parametrize the Gaussian distribution
with ⇠ ⌘ ��1 instead of �. We want there to be no bias as a result of this choice. In other
words, we want

P (� | I) = P (⇠ | I)
����
d⇠

d�

���� , (2.12)

where we have employed the change of variables formula.8 We will choose

P (� | I) =

8
<

:

(ln(�
max

/�
min

) �)�1 �
min

< � < �
max

0 otherwise,
(2.13)

and show that the condition given in equation (2.12) hold. For ��1

max

< ⇠ < ��1

min

, we have

P (⇠ | I)
����
d⇠

d�

���� = ln(�
max

/�
min

) ⇠�1 ��2 = ln(�
max

/�
min

) ��1 = P (� | I), (2.14)

7
There is really no problem with it not being proper. In fact, improper priors are commonly used.

8
Remember your calculus: f(x) = f(y) |dy/dx|.
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so the condition holds. It holds trivially outside of the bounds. This prior, P (� | I) / ��1, is
often called a Je↵reys prior

9, as Harold Je↵reys suggested it in 1939. It is an uninformative
prior to use for scale parameters like �, which can equivalently be represented by their
reciprocals. Like the prior for µ, the bounds �

min

and �
max

can be chosen to be su�ciently
large/small such that they are immaterial.

An aside about the Je↵reys prior. Again using the change of variables formula, we see
that

P (� | I) = P (ln � | I)
����
d ln �

d�

���� =
1

�
P (ln � | I). (2.15)

Thus,

P (ln � | I) =

8
<

:

(ln �
max

� ln �
min

)�1 ln �
min

< ln � < ln �
max

,

0 otherwise.
(2.16)

So, if a parameter has a Je↵reys prior, its logarithm has a uniform prior. This can be convenient
when defining parameters and performing optimizations.

2.6 The posterior

Now that we have specified the likelihood and prior, we have the posterior.

P (µ, � | D, I) =
c

�n+1

exp

(
� 1

2�2

X

i2D

(xi � µ)2
)
, (2.17)

where we have absorbed all constants in to the normalization constant c10. We could do this
because we chose the bounds on the priors of µ and � to be su�ciently far away from the peak
of the likelihood that they contribute negligibly to the posterior. This also allows us to extend
our bounds of integration to infinity when integrating.

So, we are done! We have now updated our knowledge of µ and �. We could just plot the
posterior distribution. We could show it as a contour plot in the µ-� plane, for instance.

9
The term Je↵reys prior can also be used to describe a class of uninformative priors more generally, but we

will not dwell on that here.

10
We do this here for convenience, but when we do model selection later on, we will have to compute the

evidence, so we should be careful about the normalization constants of the priors throughout our calculations.
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But, it would be nice to get the posterior into a bit of a cleaner form. We can show, after
some algebraic grunge, that

X

i2D

(xi � µ)2 = n(x̄� µ)2 + nr2, (2.18)

where

r2 =
1

n

X

i2D

(xi � x̄)2 (2.19)

is the sample variance and

x̄ =
1

n

X

i2D

xi. (2.20)

Thus, we have

P (µ, � | D, I) =
c e�nr2/2�2

�n+1

exp

⇢
�n(µ� x̄)2

2�2

�
. (2.21)

In this form, we immediately see that, regardless the value of �, the most probable value of µ
is x̄. This is perhaps not surprising that the most probable value of µ is the sample mean, but
it is pleasing how nicely it falls out of the analysis.

Now, it would really like to get a summary of the posterior to be able to report some nice
numbers, like most the probable µ = x̄, instead of a plot.

2.6.1 The mean µ

We wanted to get P (µ | D, I) in the first place. As we said before, we can get that by
marginalizing over �.

P (µ | D, I) =

Z 1

0

d� P (µ, � | D, I) (2.22)

= c

Z 1

0

d�

�n+1

exp

⇢
�n(µ� x̄)2 + nr2

2�2

�
.

This integral is a little gnarly, but we can evaluate it. We end up getting

P (µ | D, I) /
✓
1 +

(µ� x̄)2

r2

◆�n
2

/
 
X

i2D

(xi � µ)2
!�n

2

. (2.23)
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I have written the expression in two equivalent forms because it is sometimes more convenient
to use one or the other. They are proportional, as you can verify by yourself. For now, we’ll
use the first expression, since it is convenient for computing the marginalized posteriors. We
can integrate this to get the normalization constant, giving

P (µ | D, I) =
�
�
n
2

�
p
⇡�
�
n�1

2

� 1

r

✓
1 +

(µ� x̄)2

r2

◆�n
2

. (2.24)

The normalization contains gamma functions. This distribution has a name. It is the Student-
t distribution. As we now know, it describes the estimate mean of a Gaussian distribution with
unknown variance from which the data were drawn. As written, the Student-t distribution
above is said to have n� 1 degrees of freedom.

As we have already determined, the most probable value of µ is x̄. We would like to describe
an error bar11 for this parameter µ. Since we know its posterior, the error bar is just some
summary of the posterior distribution. We could report the error bar to contain the set of
values of µ, centered on x̄, that contain a given percentage of the probability.

The common practice for getting the error bar is to approximate the posterior distribution as
Gaussian and report intervals based on the standard deviation of the Gaussian approximation.
To get a Gaussian approximation, we expand the logarithm of posterior probability distribution
function in a Taylor series about its maximum.

lnP (µ | D, I) = constant� n

2
ln

✓
1 +

(µ� x̄)2

r2

◆
(2.25)

⇡ constant� n(µ� x̄)2

r2
. (2.26)

Exponentiating and evaluating the normalization constant yields

P (µ | D, I) ⇡ 1p
2⇡r2/n

exp

⇢
�(µ� x̄)2

2r2/n

�
, (2.27)

a Gaussian distribution with mean x̄ and variance r2/n. Recall that r2 is the sample variance, so
the variance of the Gaussian approximation of the posterior distribution is the sample variance
divided by n. The quantity r/

p
n is referred to as the standard error of the mean, which

is often how error bars are reported. We now know that it describes the width of the (Gaus-
sian approximation of the) posterior distribution describing the parameter value we sought to
measure.

11
I’m using the term “error bar” loosely here. We will sharpen this definition later in the course.
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2.6.2 The variance �2

Often overlooked is an estimate for the variance. Remember, when we took measurements, we
did not assume we knew the variance of the measurements. We would also like an estimate of
it.

We take a similar approach. We marginalize the full posterior over µ.

P (� | D, I) =

Z 1

�1
dµP (µ, � | D, I). (2.28)

The integral is again doable, but also again a bit gnarly. The result is

P (� | D, I) =
c

�n
exp

⇢
�nr2

2�2

�
. (2.29)

We can compute the normalization constant, but it is a messy expression including some in-
complete gamma functions. We will not bother. Instead, we can find the most probable �.
This is found by finding the value of � for which the derivative of the posterior is zero.

d

d�
P (� | D, I) = c(nr2��n�3 � n��n�1) exp

⇢
�nr2

2�2

�
(2.30)

= cn��n�1

✓
r2

�2

� 1

◆
exp

⇢
�nr2

2�2

�
. (2.31)

This is zero when �2 = r2, or

�2 =
1

n

X

i2D

(xi � x̄)2. (2.32)

We can also compute a confidence interval on the parameter �. Note, though, that its
distribution, P (� | D, I), is not symmetric, as seen in Fig. 2.

Given that the distribution is not symmetric, we might want to provide a point estimate
for � using expectation values, instead of finding the most probable value. The integrals are
nasty, but can be evaluated.

h�i =
Z 1

0

d� � P (� | D, I) =
�
�
n�2

2

�

�
�
n�1

2

�
r

n

2
r. (2.33)

Alternatively, we could compute the expectation value for �2,

h�2i =
Z 1

0

d� �2 P (� | D, I) =
n

n� 1
r2 =

1

n� 1

X

i2D

(xi � x̄)2, (2.34)

17



Figure 2: The posterior distribution of � with r = 1 for various values of n. It becomes more
symmetric as n grows.

which may be familiar to you as the so-called sample variance, or the unbiased estimate of the
variance. Really, by choosing to report the most probable value of �, the h�i, or

p
h�2i, we are

just choosing one property of P (� | D, I) to report. We actually know the whole distribution,
though, so whatever we choose is just a summary of it.
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