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4 Model selection

We have spent a lot of time in the past couple of weeks looking at the problem of parameter
estimation. Really, we have been stepping through the process of bringing our thinking about
a biological system into a concrete statistical model that defines a likelihood for the data and
the parametrization thereof. Writing down Bayes’s theorem then gives the posterior,

P (a | D, I) =
P (D | a, I)P (a | I)

P (D | I) , (4.1)

where a is the set of parameters. Solving the parameter estimation problem involves comput-
ing the posterior, which usually involves summarizing the posterior into a form that can be
processed intuitively.

4.1 Adding models to the probabilities

When we write Bayes’s theorem for the parameter estimation problem, implicit in the definition
of the likelihood is the fact that we are using a specific statistical model. We really should be
explicit and include which model we’re using in our probabilities.13 Let Mi be model i. Then,
for parameter estimation, we have

P (ai | D,Mi, I) =
P (D | ai,Mi, I)P (ai | Mi, I)

P (D | Mi, I)
. (4.2)

Notice that we have also assigned the subscript i to the set of parameters we are determining
to specify that they are associated with model Mi. So this is a more explicit description of the
probabilities associated with the parameter estimation problem.

4.2 Probabilities of models

Remember that Bayesian probability is a measure of the plausibility of any logical conjecture.
So, we can talk about the probability of models being true. So, what is the probability that a
model is true, given the observed data? Again, this is given by Bayes’s theorem.

P (Mi | D, I) =
P (D | Mi, I)P (Mi | I)

P (D | I) . (4.3)

This is Bayes’s theorem states for the model selection problem. Let’s look at each term in turn.

13We haven’t been this explicit so we don’t get over burdened with notation.
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• P (Mi | D, I), as we said before, is the probability that model Mi is true given the
measured data.

• P (D | I) is a normalization constant for the posterior that is computed by marginalizing
over all possible models

X

i

P (Mi | D, I) = 1 ) P (D | I) =
X

i

P (D | Mi, I)P (Mi | I). (4.4)

• P (Mi | I) is a measure of how plausible we thought model Mi is a priori, the prior prob-
ability for model Mi. For example, if a proposed model violates a physical conservation
law, we know it is unlikely to be true even before we see the data. In practice, we typically
assign equal probability to all models we have not ruled out prior to seeing the data. I.e.,
we have uninformative priors for the models.

• P (D | Mi, I) is the likelihood of observing the data, given that model Mi is true.

As usual, we need to specify the likelihood and prior to assess the posterior probability of
any given model. We already discussed how to specify the prior. We usually assume all models
are equally likely. How about the likelihood? Well, glancing at equation (4.2), we see that
the likelihood for the model selection problem is the evidence for the parameter estimation
problem! Because the posterior in the parameter estimation problem, P (ai | D,Mi, I), must be
normalized, the evidence in the parameter estimation problem, and therefore also the likelihood
in the model selection problem, is given by

P (D | Mi, I) =

Z
dai P (D | ai,Mi, I)P (ai | Mi, I). (4.5)

So, if we can compute the likelihood and priors from the parameter estimation problem and
can integrate their product, we have the likelihood for the model selection problem.

4.3 Bayes factors and odds ratios

Computing the absolute probability of a model is di�cult, since it would require considering all
possible models, as is required to compute the normalization constant, P (D | I). We typically
therefore make pairwise comparisons between models. This comparison is called an odds ratio.
It is the ratio of the probabilities of two models being true.

Oij =
P (Mi | I)
P (Mj | I)


P (D | Mi, I)

P (D | Mj, I)

�
. (4.6)
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The first factor in the product is the ratio of our prior knowledge of the truth of the models.
If they are equally likely, this ratio is unity. The bracketed ratio is called the Bayes factor,
which is the ratio of the evidences of the respective models.

Note that if we compute all of the odds ratios comparing a given model k to all others (and
somehow did manage to consider all models that have nonzero probability), we can compute
the posterior probability of model Mi as

P (Mi | D, I) =
OikP
j Ojk

. (4.7)

4.4 Approximate computation of the Bayes factor

Evaluating the integral in equation (4.5) to compute the Bayes factor is in general di�cult. If
the posterior is sharply peaked, we may compute this integral using the Laplace approxima-
tion in which we approximate the integral by the height of the peak times its width. In one
dimension, this is

P (D | Mi, I) =

Z
dai P (D | ai,Mi, I)P (ai | Mi, I)

⇡ P (D | a⇤i ,Mi, I)P (a⇤i | Mi, I)
q

2⇡�2

i , (4.8)

where a⇤ is the MAP estimate, �2

i is the variance of the Gaussian approximation of the posterior.
In n-dimensions, this is

P (D | Mi, I) =

Z
dai P (D | ai,Mi, I)P (ai | Mi, I) (4.9)

⇡ P (D | a⇤
i ,Mi, I)P (a⇤

i | Mi, I) (2⇡)
|ai|/2

q
det�2

i , (4.10)

where �2

i is now the covariance matrix of the Gaussian approximation of the posterior under
model Mi. Note that we have already computed all of factors in the above product in the
parameter estimation problem. Therefore, we already have what we need to compute the
(approximate) odds ratio.
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4.5 The factors in the odds ratio

We can now write the approximate odds ratio as the product of three factors.

Oij ⇡
✓
P (Mi | I)
P (Mj | I)

◆✓
P (D | a⇤

i ,Mi, I)

P (D | a⇤
j ,Mj, I)

◆0

@P (a⇤
i | Mi, I) (2⇡)

|ai|/2
p
det�2

i

P (a⇤
j | Mj, I) (2⇡)

|aj |/2
q
det�2

j

1

A . (4.11)

• The first term represents the prior probability of the models. This is how plausible we
thought the models were before the experiment.

• The second term is a measure of the goodness of fit. In other words, it comments on how
probable the data are given the model and the MAP estimate.

• The third term is a ratio of Occam factors. An Occam factor is the ratio of the volume
of parameter space accessible to the posterior to that of the prior. This is best seen by
example. Consider a single parameter model where the parameter has a uniform prior.
Then,

Occam factor / P (a | Mi, I)�i =
�i

a
max

� a
min

. (4.12)

Now, compare a model, with one parameter (a) with uniform prior to one with two (a
and b). In this case, we have

P (a⇤ | Mi, I) =
1

a
max

� a
min

, (4.13)

P (a⇤, b⇤ | Mj, I) =
1

a
max

� a
min

1

b
max

� b
min

. (4.14)

So, the volume of the parameter space model Mj is larger than Mi, so the this part of
the odds ratio is greater than one, favoring the model with fewer parameters. The ratio
of Occam factors is then

�iq
2⇡ det�2

j

(b
max

� b
min

). (4.15)

It is also often the case that complicated models with lots of parameters also have smaller
determinants of the covariance because the multitude of parameters are “locked in” around
the MAP estimate. Thus, we see where the Occam factor gets its name, since it it penalizes
more complicated models.14

14Remember that Occam’s razor states that among competing hypotheses, the one with fewest assumptions
is preferred.
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This approximate calculation shows us everything that goes into the odds ratio. Any one
factor can overwhelm the others:

• What we knew before

• How well the model fits the data

• How simple the model is

4.6 Example: Are two data sets from the same distribution?

We will now look at an example. Say I do two sets of measurements of property x, a control
and an experiment. We make nc control measurements and ne experiment measurements. We
consider two models. Model M

1

says that both the control and the experiment are chosen from
the same underlying Gaussian distribution with mean µ and variance �. Model M

2

says that
control and experiment come from di↵erent Gaussian distributions with means µc and µe. We
wish to compare models M

1

and M
2

. The odds ratio is

O
12

=
P (M

1

| I)
P (M

2

| I)
P (Dc, De | M1

, I)

P (Dc, De | M2

, I)
, (4.16)

where Dc denotes the data from the control experiment and De denotes the data from the
experiment.

We will assume a prior that P (Mi | I) = P (Mj | I). Then, we are left to compute
P (Dc, De | M

1

, I) and P (Dc, De | M
2

, I). We can do this by approximate integration (see
section 4.3.1 of Sivia). Note that we assume a uniform prior on �, with 0 < � < �

max

. We
could also try the problem with a Je↵reys prior on �, but I do not feel like doing the nasty
integration. The result for the odds ratio is

O
12

⇡ �
max

(µ
max

� µ
min

)

⇡
p
2

n
1

n
2

s2�n1�n2

(n
1

+ n
2

) s2�n1
1

s2�n2
2

, (4.17)

where

s2 =
1

n
1

+ n
2

X

i2D1[D2

(xi � x̄)2, (4.18)

s2
1

=
1

n
1

X

i2D1

(xi � x̄
1

)2, (4.19)
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s2
2

=
1

n
2

X

i2D2

(xi � x̄
2

)2, (4.20)

with

x̄ =
1

n
1

+ n
2

X

i2D1[D2

xi, (4.21)

x̄
1

=
1

n
1

X

i2D1

xi, (4.22)

x̄
2

=
1

n
2

X

i2D2

xi. (4.23)

It seems that this question is often asked: does the experiment come from a di↵erent process
than the control? My opinion is that in most situations, the answer is an obvious yes, and the
more pertinent question is by how much they di↵er. Nonetheless, if we are asking the “if they
are di↵erent” question, we can plug our data in and easily compute it.

4.7 Computing odds ratios without the Laplace approximation

We can use a technique called parallel-tempering Markov chain Monta Carlo (PTMCMC) to
compute odds ratios without making the Laplace approximation. As you likely have guessed,
this is computationally intensive, but e↵ective. We will learn about this in an upcoming lecture.
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