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5 Parallel tempering MCMC

In this lecture, we will discuss parallel tempering Markov chain Monte Carlo (PTMCMC).
This technique allows for e↵ective sampling of multimodal distributions and it avoids getting
trapped on local maxima of the posterior. Perhaps even more importantly, it allows us to
perform model selection.

5.1 The basic idea

Recall that the posterior distribution we seek to sample in the model selection problem is

P (ai | D,Mi, I) / P (ai | Mi, I)P (D | ai,Mi, I). (5.1)

Now, we define

⇡(ai | D,Mi, �, I) = P (ai | Mi, I) [P (D | ai,Mi, I)]
� (5.2)

= P (ai | Mi, I) exp {� lnP (D | ai,Mi, I)} . (5.3)

Here, � 2 (0, 1] is an “inverse temperature” in analogy to statistical mechanics, where the
quantity � lnP (D | ai,Mi, I) is an energy (so P (D | ai,Mi, I) is analogous to a partition
function).

If � is close to zero (the “high temperature” limit), we are just sampling the prior. If
� = 1, we are sampling our target posterior, the so-called “cold distribution.” So, lowering �
has the e↵ect of flattening the posterior distribution. Therefore, walkers at higher temperature
(lower �) are not trapped at local maxima. By occasionally swapping walkers from adjacent
temperatures, we can e↵ectively sample a broader swath of parameter space.

In practice, we choose a set of �’s with � = {�
0

, �
1

, . . . , �m}, with �i+1

< �i and �
0

= 1.
We propose a swap roughly every ns steps and accept it based on criteria that guarantees
the posterior is a stationary distribution of the transition kernel. To do this in practice, we
choose a uniform random number on [0, 1] every iteration and propose a swap when this random
number is less than 1/ns. When we do propose a swap, we randomly pick a temperature �j

from {�
1

, �
2

, . . . �m}. We then compute

r = min

✓
1,

⇡(ai,j | D,Mi, �j�1

, I)

⇡(ai,j�1

| D,Mi, �j�1

, I)

⇡(ai,j�1

| D,Mi, �j, I)

⇡(ai,j | D,Mi, �j, I)

◆
. (5.4)

Here, we have defined ai,j as the value of parameter i for a walker at temperature �j. We then
draw another uniform random number on [0, 1] and accept the swap is that number if less than
r.
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This useful technique is implemented in emcee.PTSampler, which we will use in the next
tutorial on model selection. Conveniently, it automatically chooses reasonable values of � and
swapping rate, though you can specify these as well.

5.2 Model selection with PTMCMC

We will now do some clever ticks to see how we can use PTMCMC to do model selection
without making the approximations we in the previous lecture. Recall the statement of Bayes’s
theorem for the model selection problem, equation (4.3).

P (Mi | D, I) =
P (D | Mi, I)P (Mi | I)

P (D | I) . (5.5)

The likelihood in the model selection problem is given by the evidence from the parameter
estimation problem, as we derived in equation (4.5). Thus,

P (Mi | D, I) =
P (Mi | I)
P (D | I)

Z
dai P (ai | Mi, I)P (D | ai,Mi, I)

�
. (5.6)

Now, we define a partition function

Zi(�) =

Z
dai P (ai | Mi, I) [P (D | ai,Mi, I)]

� . (5.7)

Our goal is to compute Zi(1), since this is exactly the integral in brackets in equation (5.6).

Now, we’re going to do a usual trick in statistical mechanics: we will di↵erentiate the log
of the partition function (analogous to the derivative of a free energy).

@

@�
lnZi(�) =

1

Zi(�)

@Zi

@�

=
1

Zi(�)

Z
dai

@

@�
exp {lnP (ai | Mi, I) + � lnP (D | ai,Mi, I)}

=
1

Zi(�)

Z
dai lnP (D | ai,Mi, I) exp {lnP (ai | Mi, I) + � lnP (D | ai,Mi, I)}

=
1

Zi(�)

Z
dai lnP (D | ai,Mi, I)P (ai | Mi, I) [P (D | ai,Mi, I)]

�

= hlnP (D | ai,Mi, I)i� , (5.8)
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where the averaging is done over the distribution ⇡(ai | D,Mi, �, I), and the subscript �
indicates that the averaging is done for a specific value of �. We can integrate both sizes of
this equation to give

Z
1

0

d�
@

@�
lnZi(�) = lnZi(1)� lnZi(0) =

Z
1

0

d� hlnP (D | ai,Mi, I)i� . (5.9)

Now, if the prior is normalized, as it should be,

Zi(0) =

Z
dai P (ai | Mi, I) = 1, (5.10)

which means lnZi(0) = 0. Thus, we get

lnZi(1) =

Z
dai P (D | ai,Mi, I)P (ai | Mi, I) =

Z
1

0

d� hlnP (D | ai,Mi, I)i� . (5.11)

Fortunately, we have done MCMC, so we can easily compute the integrand for each � from our
samples.

hlnP (D | ai,Mi, I)i� =
1

n
samples

X

samples

lnP (D | ai,Mi, �, I). (5.12)

Since we had to compute the log likelihood for every step, we have all we need. We then perform
numerical quadrature across the values of � that we sampled to get the integral. We therefore
can compute the odds ratio of two models Mi and Mj as

Oij =
P (Mi | I)
P (Mj | I)

Zi(1)

Zj(1)
=

P (Mi | I)
P (Mj | I)

exp

(R
1

0

d� hlnP (D | ai,Mi, I)i�R
1

0

d� hlnP (D | aj,Mj, I)i�

)
, (5.13)

where the last ratio is via numerical quadrature on results computed directly from our PTMCMC
traces using equation (5.12). We can get lnZi(1) using the built-in
thermodynamic_integration_log_evidence()method of an emcee.PTSampler instance. Note
that we have made no approximations at all in the model. The calculation is only approxi-
mate to the extent that the PTMCMC sampler takes a finite number of samples and numerical
quadrature is not exact.
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