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8 Hierarchical models

In this lecture, we will investigate hierarchical models, in which some model parameters are
dependent on others in specific ways. This is best learned by example.

8.1 A hierarchical model example

In homework problem 4.2, we studied reversals under exposure to blue light in C. elegans with
Channelrhodopsin in two di↵erent neurons. Let’s consider one of the strains which contains a
Channelrhodopsin in the ASH sensory neuron. The experiment was performed by the students
of Bi 1x in 2015 and again in 2016. In 2015, we found that 9 out of 35 worms reversed under
exposure to blue light. In 2016, 12 out of 35 reversed.

Considering for a moment only the 2015 experiment, we can use this measurement to es-
timate the probability p of reversal. Specifically, we found that the posterior probability of
reversal given r our of n trials showed reversals was

P (p | r, n, I) =

8
<

:

(n+ 1)!

(n� r)!r!
pr(1� p)n�r 0  p  1

0 otherwise.

(8.1)

This posterior assumed a uniform prior P (p | I) on 0  p  1, and a binomial likelihood,
P (r | n, p, I).

We did the experiment again in 2016, getting r = 12 and n = 35. Actually, we could
imagine doing the experiment over and over again, say k times, each time getting a value of
r and n. Conditions may change from experiment to experiment. For example, we may have
di↵erent lighting set-ups, slight di↵erences in the strain of worms we’re using, etc. We are left
with some choices on how to model the data.

8.1.1 Pooled data: identical parameters

We could pool all of the data together. In other words, let’s say we measure r
1

out of n
1

reversals in the first set of experiments, r
2

out of n
2

reversals in the second set, etc., up to k
total experiments. We could pool all of the data together to get

r =
kX

i=1

r
i

out of n =
kX

i=1

n
i

reversals. (8.2)
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We then compute our posterior as in equation (8.1). Here, the assumption is that the result
in each experiment are governed by identical parameters. That is to say that we assume
p
1

= p
2

= · · · = p
k

= p.

This is similar to what we did in section 1.9, in which we looked at how a single hypothesis
(or parameter value) is informed by more data. This is also exactly what you did in homework
4.

8.1.2 Independent parameters

As an alternative, we could instead say that the parameters in each experiment are totally
independent of each other. In this case, we assume that p

1

, p
2

, . . ., p
k

are all independent of
each other. Thus, the posterior probability is

P (p | r,n, I) =
kY

i=1

(n
i

+ 1)!

(n
i

� r
i

)!r
i

!
pri
i

(1� p
i

)ni�ri , (8.3)

where p = {p
1

, p
2

, . . . p
k

}, with n and r similarly defined, and the posterior is understood to be
zero if any the p

i

’s fall our of the interval [0, 1].

When we make this assumption, we often report a value of p that is given by the mean of
the p

i

’s with some error bar.

8.1.3 Best of both worlds: a hierarchical model

Each of these extremes have their advantages. We are often trying to estimate a parameter
that is more universal than our experiments, e.g., something that describes worms with Chan-
nelrhodopsin in the ASH neuron generally. So, pooling the experiments makes sense. On the
other hand, we have reason to assume that there is going to be a di↵erent value of p in di↵erent
experiments, as biological systems are highly variable, not to mention measurement variations.
So, how can we capture both of these e↵ects?

We can consider a model in which there is a “master” reversal probability, which we’ll call q
to avoid too many p’s, and the values of p

i

may vary from this q according to some probability
distribution, P (p

i

| q, I). So now, we have parameters p
1

, p
2

, . . . , p
k

and q. So, the posterior
can be written using Bayes’s theorem,

P (q,p | r,n, I) = P (r,n | q,p, I)P (q,p | I)
P (n, r | I) . (8.4)
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Note, though, that the observed values of r do not depend directly on q, only on p. In other
words, they only depend indirectly on q. So, we can write P (r,n | q,p, I) = P (r,n | p, I).
Thus, we have

P (q,p | r,n, I) = P (r,n | p, I)P (q,p | I)
P (n, r | I) . (8.5)

Next, we can rewrite the prior using the definition of conditional probability.

P (q,p | I) = P (p | q, I)P (q | I). (8.6)

Substituting this back into our expression for the posterior, we have

P (q,p | r,n, I) = P (r,n | p, I)P (p | q, I)P (q | I)
P (n, r | I) . (8.7)

Now, if we read o↵ the numerator of this equation, we see a chain of dependencies. The
experimental results r depend on parameters p. Parameters p depend on hyperparameter q.
Hyperparameter q then has some prior distribution. Any model that can be written as a chain
of dependencies like this is called a hierarchical model, and the parameters that do not
directly influence the data are called hyperparameters.

So, the hierarchical model captures both the experiment-to-experiment variability, as well
as the master regulator of outcomes. Note that the product P (p | q, I)P (q | I) comprises the
prior, as it is therefore independent of the observed data.

8.2 Exchangeability

The conditional probability, P (p | q, I), can take any reasonable form. In the case where
we have no reason to believe that we can distinguish any one p

i

from another prior to the
experiment, then the label “i” applied to the experiment may be exchanged with the label of
any other experiment. I.e., P (p

1

, p
2

, . . . , p
k

| q, I) is invariant to permutations of the indices.
Parameters behaving this way are said to be exchangeable. A common (simple) exchangeable
distribution is

P (p | q, I) =
kY

i=1

P (p
i

| q, I), (8.8)

which means that each of the parameters is an independent sample out of a distribution P (p
i

|
q, I), which we often take to be the same for all i. This is reasonable to do in the worm reversal
example.
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8.3 Choice of the conditional distribution/prior

We need to specify our prior, which for this hierarchical model means that we have to specify
the conditional distribution, P (p

i

| q, I), as well as P (q | I) For the latter, we will take it to be
uniform on [0, 1]. For the conditional distribution, we will assume it is Beta-distributed, which
is defined on the interval [0, 1] and can be peaked. The Beta distribution can be written as

P (p | ↵, �) = �(↵ + �)

�(↵)�(�)
p↵�1(1� p)��1, (8.9)

where it is parametrized by positive constants ↵ and �. The Beta distribution has mean and
variance, respectively, of

q =
↵

↵ + �
, (8.10)

�2 =
↵�

(↵ + �)2(↵ + � + 1)
. (8.11)

So, we could also parametrize the Beta distribution with these, noting that we can convert back
to ↵ and � using

↵ =
q

�2

�
q(1� q)� �2

�
, (8.12)

� =
1� q

�2

�
q(1� q)� �2

�
. (8.13)

We have 0 < q < 1 and 0 < �2 < q(1 � q). So, we have an additional hyperparameter,
�2, which describes experiment-to-experiment variability. In analogy to Gaussian distributions
(which the Beta approximates for large ↵ and �), we will take P (�2 | I) / 1/�2. Thus, our full
posterior is

P (q, �2,p | r,n, I) / P (r,n | p, I) ��2

 
kY

i=1

P (p
i

| q,)
!
, (8.14)

nonzero on 0  q,p  1 and 0 < �2 < q(1� q), where

P (p
i

| q, �2) =
�(↵ + �)

�(↵)�(�)
p↵
i

(1� p
i

)�, (8.15)

where ↵ and � are understood to be functions of q and �2 according to equations (8.12)
and (8.13). As before, we have a binomial likelihood, where we assume the experiments are
independent.

P (r,n | p, I) =
kY

i=1

n
i

!

(n
i

� r
i

)!r
i

!
pri
i

(1� p
i

)ni�ri . (8.16)
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8.4 Implementation

In some cases, we can do some gnarly integration and work out analytical results for the
posterior of a hierarchical model. This usually involves choosing conjugate priors. Most often,
though, we need to resort to numerical methods, MCMC as usual being the most powerful. To
see the worm reversal problem solved with a hierarchical model, see the implementation here.

8.5 Generalization

The worm reversal problem is easily generalized. You can imagine having more levels of the
hierarchy. This is just more steps in the chain of dependencies that are factored in the prior.
For general parameters ✓ and hyperparameters �, we have

P (✓,� | D, I) =
P (D | ✓, I)P (✓ | �, I)P (� | I)

P (D | I) (8.17)

for a two-level hierarchical model. For a three-level hierarchical model, we can consider hyper-
parameters ⇠ that depend on �, giving

P (✓,�, ⇠ | D, I) =
P (D | ✓, I)P (✓ | �, I)P (� | ⇠, I)P (⇠ | I)

P (D | I) , (8.18)

and so on for four, five, etc., level hierarchical models. As we have seen in the course, the
work is all in coming up with the models for the likelihood P (D | ✓, I), and prior, P (✓ |
�, I)P (� | I), in this case for a two-level hierarchical model. For coming up with the conditional
portion of the prior, P (✓ | �, I), we often assume a Gaussian distribution because this often
describes experiment-to-experiment variability. (The Beta distribution we used in our example
is approximately Gaussian and has the convenient feature that it is defined on the interval
[0, 1].) Bayes’s theorem gives you the posterior, and it is then “just” a matter of computing it
by sampling from it.
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