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1 Bayes’s theorem and the logic of science

We start with a question. What is the goal of doing (biological) experiments?
There are many answers you may have for this. Some examples:

• To further knowledge.

• To test a hypothesis.

• To explore and observe.

• To demonstrate. E.g., to demonstrate feasibility.

More obnoxious answers are

• To graduate.

• Because your PI said so.

• To get data.

This question might be better addressed if we zoom out a bit and think about
the scientific process as a whole. In Fig. 1, we have a sketch of the scientific pro-
cesses. This cycle repeats itself as we explore nature and learn more. In the boxes
are milestones, and along the arrows in orange text are the tasks that get us to these
milestones.
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Figure 1: A sketch of the scientific process. Adapted fromFig. 1.1 of P. Gregory,
Bayesian Logical Data Analysis for the Physical Sciences, Cambridge, 2005.

Let’s consider the tasks and their milestones. We start in the lower left.
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• Hypothesis invention/refinement. In this stage of the scientific process, the re-
searcher(s) think about nature, all that they have learned, including from their
experiments, and formulate hypotheses or theories they can pursue with ex-
periments. This step requires innovation, and sometimes genius (e.g., general
relativity).

• Deductive inference. Given the hypothesis, the researchers deduce what must
be true if the hypothesis is true. You have done a lot of this in your study to this
point, e.g., given X and Y, derive Z. Logically, this requires a series of strong
syllogisms:

If A is true, then B is true.
A is true.
Therefore B is true.

The result of deductive inference is a set of (preferably quantitative) predic-
tions that can be tested experimentally.

• Do experiment. This requireswork, and also its own kind of innovation. Specif-
ically, you need to think carefully about how to construct your experiment to
test the hypothesis. It also usually requires money. The result of doing exper-
iments is data.

• Statistical (plausible) inference. This step is perhaps the least familiar to you,
but this is the step that this course is all about. I will talk about what statistical
inference is next; it’s too involved for this bullet point. But the result of statis-
tical inference is knowledge about how plausible a hypothesis and estimates of
parameters under that hypothesis are.

1.1 What is statistical inference?

As we designed our experiment under our hypothesis, we used deductive logic to
say, “If A is true, then B is true,” where A is our hypothesis and B is an experimental
observation. This was deductive inference.

Now, let’s say we observe B. Does this make A true? Not necessarily. But it does
make A more plausible. This is called a weak syllogism. As an example, consider the
following hypothesis/observation pair.

A = Wastewater injection after hydraulic fracturing, known as fracking,
can lead to greater occurrence of earthquakes.

B = The frequency of earthquakes in Oklahoma has increased 100 fold
since 2010, when fracking became common practice there.

Because B was observed, A is more plausible.
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Statistical inference is the business of quantifying how much more plausible A is
after obesrving B. In order to do statistical inference, we need a way to quantify
plausibility. Probability serves this role.

So, statistical inference requires a probability theory. Thus, probability the-
ory is a generalization of logic. Due to this logical connection and its crucial role in
science, E. T. Jaynes says that probability is the “logic of science.”

1.2 The problem of probability

We know what we need, a theory called probability to quantify plausibility. We
will not formally define probability here, but use our common sense reasoning of
it. Nonetheless, it is important to understand that there are two dominant interpre-
tations of probability.

Frequentist probability. In the frequentist interpretation of probability, the prob-
ability P(A) represents a long-run frequency over a large number of identical repeti-
tions of an experiment. These repetitions can be, and often are, hypothetical. The
event A is restricted to propositions about random variables, a quantity that can very
meaningfully from experiment to experiment.1

Bayesian probability. Here, P(A) is interpreted to directly represent the degree
of belief, or plausibility, about A. So, A can be any logical proposition.

Youmayhaveheard about a split, or even afight, betweenpeoplewhouseBayesian
and frequentist interpretations of probability applied to statistical inference. There
is no need for a fight. The twoways of approaching statistical inference differ in their
interpretation of probability, the tool we use to quantify plausibility. Both are valid.

Inmyopinion, theBayesian interpretation of probability ismore intuitive to apply
to scientific inference. It always starts with a simple probabilistic expression and
proceeds to quantify plausibility. It is conceptually cleaner to me, since we can talk
about plausibility of anything, including parameter values. In other words, Bayesian
probability serves to quantify our own knowledge, or degree of certainty, about a
hypothesis or parameter value. Conversely, in frequentist statistical inference, the
parameter values are fixed, and we can only study how repeated experiments will
convert the real parameter value to an observed real number.

We will use some frequentist approaches in class, especially when we study non-
parametric methods, but we will generally focus on Bayesian analysis. For now, we
will focus on some key properties of probability.

1More formally, a random variable transforms the possible outcomes of an experiment to real
numbers.
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1.3 Desiderata for Bayesian probability

In 1946, R. Cox laid out a pair of rules based on some desired properties of probability
as a quantifier of plausibility. These ideas were expanded on by E. T. Jaynes in the
1970s. The desiderata are

I. Probability is represented by real numbers.

II. Probabilitymust agree with rationality. Asmore information is supplied, prob-
abilitymust rise in a continuous,monotonicmanner. The deductive limitmust
be obtained where appropriate.

III. Probability must be consistent.

a) Structure consistency: If a result is reasoned in more than one way, we
should get the same result.

b) Propriety: All relevant information must be considered.
c) Jaynes consistency: Equivalent states of knowledge must be represented

by equivalent probability.

Based on these desiderata, we can work out important results that a probability
function must satisfy. I pause to note that one can generally define probability with-
out a specific interpretation in mind, and it is valid for both Bayesian and frequentist
interpretations. See, for example, section 1.6 of Blitzstein and Hwang, Introduction
to Probability, CRC Press, 2015.

Two results of these desiderata (worked out in chapter 2 of Gregory’s book) are
the sum rule and the product rule. They apply to both frequentist and Bayesian inter-
pretations.

1.4 The sum rule, the product rule, and conditional probability

The sum rule says that the probability of all events must add to unity. Let Ā be all
events except A. Then, the sum rule states that

P(A) + P(Ā) = 1. (1.1)

Now, let’s say that we are interested in eventA happening given that eventB hap-
pened. So, A is conditional on B. We denote this conditional probability as P(A | B).
Given this notion of conditional probability, we can write the sum rule as

(sum rule) P(A | B) + P(Ā | B) = 1, (1.2)

for any B.
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The product rule states that

P(A,B) = P(A | B)P(B), (1.3)

where P(A,B) is the probability of both A and B happening. The product rule is also
referred to as the definition of conditional probability. It can similarly be expanded
as we did with the sum rule.

(product rule) P(A,B | C) = P(A | B,C)P(B | C), (1.4)

for any C.

1.5 Application to scientific measurement

This is all a bit abstract. Let’s bring it into the realm of scientific experiment. We’ll
assign meanings to these things we have been calling A, B, and C.

A = hypothesis (or parameter value), Hi, (1.5)

B = Measured data set, D, (1.6)

C = All other information we know, I. (1.7)

Now, let’s rewrite the product rule.

P(Hi,D | I) = P(Hi | D, I)P(D | I). (1.8)

Ahoy! The quantity P(Hi | D, I) is exactly what we want from our statistical infer-
ence. This is the probability that a hypothesis is true, or a probability density function
(or probability mass function in the discrete case) for the values of a parameter, given
measured data and everything we’ve learned. Now, how do we compute it?

1.6 Bayes’s Theorem

Note that because “and” is commutative, P(Hi,D | I) = P(D,Hi | I). So, we apply
the product rule to both sides of the seemingly trivial equality.

P(Hi | D, I)P(D | I) = P(Hi,D | I) = P(D,Hi | I) = P(D | Hi, I)P(Hi | I).
(1.9)

If we take the terms at the beginning and end of this equality and rearrange, we get

(Bayes’s theorem) P(Hi | D, I) = P(D | Hi, I)P(Hi | I)
P(D | I) . (1.10)
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This result is called Bayes’s theorem. This is far more instructive in terms of how
to compute our goal, which is the left hand side.2 The quantities on the right hand
side all have meaning. We will talk about the meaning of each term in turn, and this
is easier to do using their names; each item in Bayes’s theorem has a name.

posterior =
likelihood× prior

evidence
. (1.11)

The prior probability. First, consider the prior, P(Hi | I). As probability is a
measure of plausibility, or how believable a hypothesis is, we should be able to write
this down based on I.3 This represents the plausibility about hypothesis Hi given
everything we know before we did the experiment to get the data.

The likelihood. The likelihood, P(D | Hi, I), describes how likely it is to acquire
the observed data, given that the hypothesis Hi is true. It also contains information
about what we expect from the data, given our measurement method. Is there noise
in the instruments we are using? How do we model that noise? These are contained
in the likelihood.

The evidence. I will not talk much about this here, except to say that it can be
computed from the likelihood and prior, and is also called the marginal likelihood, a
name whose meaning will become clear in the next section.4

The posterior probability. This is what we are after. How plausible is the hypoth-
esis, given that we have measured some new data? It is calculated directly from the
likelihood and prior (since the evidence is also computed from them). Computing
the posterior distribution constitutes the bulk of our inference tasks in this course.

2Do not be confused. Bayes’s Theorem is a statement about probability and holds whether you
interpret probability in a Bayesian or frequentist manner. The name “Bayesian” does not mean that
it applies only to probability interpreted through the Bayesian lens.

3I say this flippantly. In fact, specifying prior probabilities is one of the most studied and most
controversial aspects of Bayesian statistics.

4I have heard this referred to as the “fullymarginalized likelihood” because of the cute correspon-
dence of the acronym and how some people feel trying to get their head around the meaning of the
quantity.
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1.7 Marginalization

A moment ago, I mentioned that the evidence can be computed from the likelihood
and the prior. To see this, we apply the sum rule to the posterior probability.

1 = P(Hj | D, I) + P(H̄j|D, I)

= P(Hj | D, I) +
∑
i̸=j

P(Hi | D, I)

=
∑

i

P(Hi | D, I), (1.12)

for some hypothesis Hj. Now, Bayes’s theorem gives us an expression for P(Hi |
D, I), so we can compute the sum.∑

i

P(Hi | D, I) =
∑

i

P(D | Hi, I)P(Hi | I)
P(D | I)

=
1

P(D | I)
∑

i

P(D | Hi, I)P(Hi | I)

= 1. (1.13)

Therefore, we can compute the evidence by summing over the priors and likelihoods
of all possible hypotheses.

P(D | I) =
∑

i

P(D | Hi, I)P(Hi | I). (1.14)

This process of eliminating a variable (in this case the hypotheses) from a probability
by summing is called marginalization.

Note that if the space of hypotheses is continuous, for example if the “hypothe-
sis” is a parameter value which we’ll call θ , we can replace the summation with an
integral.5

P(D | I) =
∫

dθ P(D | θ , I)P(θ | I). (1.15)

1.8 A note on the word “model”

Youmay have noticed the terms“cartoonmodel,” “mathematicalmodel,” and“sta-
tistical model” in Fig. 1. Being biologists who are doing data analysis, the word

5There are some mathematical subtleties. These are discussed at length in Jaynes’s book, Proba-
bility Theory: the logic of science.
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“model” is used to mean three different things in our work. So, for the purposes
of this course, we need to clearly define what we are talking about when we use the
word “model.”

Cartoon model. These models are the typical cartoons we see in text books or in
discussion sections of biological papers. They are a sketch of what we thinkmight be
happening in a system of interest, but they do not provide quantifiable predictions.

Mathematical model. These models give quantifiable predictions that must be
true if the hypothesis (which is sketched as a cartoon model) is true. In many cases,
getting to predictions from a hypothesis is easy. For example, if I hypothesize that
protein A binds protein B, a quantifiable prediction would be that they are colocal-
ized when I image them. However, sometimes harder work and deeper thought is
needed to generate quantitative predictions. This often requires “mathematizing”
the cartoon. This is how amathematical model is derived from a cartoonmodel. Of-
tentimes when biological physicists refer to a “model,” they are talking about what
we are calling a mathematical model.

Statistical model. Essentially, a statistical model specifies the likelihood and prior.
Statisticians often use the word “model” in this context. As a simple example, con-
sider themeasurement of the length of aC. elegans eggs. A plausible statistical model
would be that the egg lengths are Gaussian distributed (and therefore are described
by amean and a standard deviation). The statisticalmodel can include anymathema-
tization of cartoons we did to generate a mathematical model, and can also contain
any information about any possible effects we might see in a measurement.

1.9 Bayes’s theorem as a model for learning

We will close today’s lecture with a discussion of Bayes’s theorem as as model for
learning. Let’s say we did an experiment and got data set D1 as an investigation of
hypothesis H. Then, our posterior distribution is

P(H | D1, I) =
P(D1 | H, I)P(H | I)

P(D1 | I) . (1.16)

Now, let’s say we did another experiment and got data D2. We already know D1
ahead of this experiment, do our prior is P(H | D1, I), which is the posterior from
the first experiment. So, we have

P(H | D1,D2, I) =
P(D2 | D1,H, I)P(H | D1, I)

P(D2 | D1, I)
. (1.17)
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Now, we plug in Bayes’s theorem applied to our first data set, equation (1.16), giving

P(H | D1,D2, I) =
P(D2 | D1,H, I)P(D1 | H, I)P(H | I)

P(D2 | D1, I)P(D1 | I) . (1.18)

By the product rule, the denominator is P(D1,D2 | I). Also by the product rule,

P(D2 | D1,H, I)P(D1 | H, I) = P(D1,D2 | H, I). (1.19)

Inserting these expressions into equation (1.18) yields

P(H | D1,D2, I) =
P(D1,D2 | H, I)P(H | I)

P(D1,D2 | I) . (1.20)

So, acquiring more data gave us more information about our hypothesis in that same
way as if we just combined D1 and D2 into a single data set. So, acquisition of more
andmore data serves to help us learnmore andmore about our hypothesis or param-
eter value.
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