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2 Parameter estimation from repeated measurements

In the last lecture, we learned about Bayes’s theorem as a way to update a hypothesis
in light of new data. We use the word “hypothesis” very loosely here. Remember, in
the Bayesian view, probability can describe the plausibility of any proposition. The
value of a parameter is such a proposition. In this lecture, we will learn about how to
do a Bayesian estimate of a parameter. Before we do, a note on notation.

2.1 Notation of parts of Bayes’s Theorem

In the last lecture, you probably noticed, and were perhaps frustrated by, the no-
tational overloading of the letter P. Using P was useful in the last lecture to avoid
confusion as we went from discussing the desiderata of a measure of plausibility and
in discussing of probabilities of outcomes. To help aid in notation, we will use the
following conventions going forward.

• Probability densities describing measured data are denoted with f.
• Probability densities describing parameter values, hypotheses, or other non-

measured quantities, are denoted with g.
• A set of parameters for a given model are denoted θ .

So, if we were to write down Bayes’s theorem for a parameter estimation problem, it
would be

g(θ | D, I) = f(D | θ , I) g(θ | I)
f(D | I) . (2.1)

For, probabilities written with a g denote the prior or posterior, and those with an f
denote the likelihood or evidence.

Furthermore, since the contents of I are always implicitly assumed to be part of
any statistical model we will construct, we will henceforth not explicitly show it to
reduce clutter. So, we write Bayes’s theorem as

g(θ | D) =
f(D | θ ) g(θ )

f(D)
, (2.2)

which is clearer notation, I think, for setting up our inference problems.

2.2 Bayes’s theorem as applied to simple parameter estimation

Wewill consider one of the simplest examples of parameter estimation. Let’s say we
measure a parameter μ in multiple independent experiments. This could be beak
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depths of finches, fluorescence intensity in a cell, a dissociation constant for two
bound proteins, etc. The possibilities abound.

Our measurements of this parameter are D = {x1, x2, . . . xn} ≡ x. Our “hy-
pothesis” in this case, is the value of the parameter μ , so we have θ = μ . We
wish to calculate g(μ | x), the posterior probability distribution for the parameter
μ , given the data. Values of μ for which the posterior probability is high are more
probable (that is, more plausible) than those for which is it low.

To compute the posterior probability, we use Bayes’s theorem.

g(μ | x) = f(x | μ ) g(μ )
f(x) . (2.3)

Since the evidence, f(x) does not depend on the parameter of interest, μ , it is really
just a normalization constant, so we do not need to consider it explicitly. We now
have to specify the likelihood f(x | μ ) and the prior g(μ ).

Specification of the likelihood/prior pair is what statistical modeling is all about.
We will talk in most more depth about constructing these models in the next lecture.
We need a little more background on probability distributions to do that, and we will
get that in the tutorials for next week. For now, we will investigate an oft-used statis-
tical model, that of a Gaussian likelihood with uninformative priors (with a precise
definition of uninformative coming in the next lecture). The goal here is to show
how you can compute and characterize the posterior distribution analytically.

2.3 The likelihood

To specify the likelihood, we have to ask what we expect from the data, given a value
of μ . If there are no errors or confounding factors at all in our measurements, we
expect xi = μ for all i. In this case

g(x | μ ) =
n∏

i=1

δ (xi − μ ), (2.4)

the product of Dirac delta functions. Of course, this is really never the case. There
will be some errors in measurement and/or the system has variables that confound
the measurement. What, then should we choose for our likelihood?

This question is made sharper if we think about the likelihood in terms of the
statistical model we defined in the last lecture. It is the probability distribution that
describes how the data relate to the parameter we are trying to measure. Indeed,
specifying the likelihood is part of the modeling process. In Tutorial 3b, we will
learn more about probability distributions, but for now we will introduce one useful
distribution to use in our analyses.
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2.4 The Gaussian distribution

A univariate Gaussian, or Normal, probability distribution has a probability density
function (PDF) of

f(x | μ , σ ) = 1√
2π σ 2

exp
[
−(x − μ )2

2σ 2

]
. (2.5)

The parameter μ is called the mean of the distribution and σ 2 is called the variance,
with σ being called the standard deviation. Importantly, the mean and standard de-
viation in this context are names of parameters of the distribution; they are not what
you compute directly from data.

The central limit theorem says that any quantity that emerges from a large num-
ber of subprocesses tends to be Gaussian distributed, provided none of the subpro-
cesses is very broadly distributed. We will not prove this important theorem, but
we will make use of it when choosing likelihood distributions when we learn about
building statistical models next week. Indeed, in the simple case of estimating a sin-
gle parameter where many processes may contribute to noise in the measurement,
the Gaussian distribution is a good choice for a likelihood.

More generally, themulti-dimensionalGaussian distribution forx = (x1, x2, · · · , xn)
is

f(x | μ , σ ) = (2π)− n
2 (det Σ )−

1
2 exp

[
−1

2
(x− μ )T · Σ−1 · (x− μ )

]
,

(2.6)

where μ = {μ 1, μ 2, . . . , μ n} is an array of means (again, here “mean” is the name
of the parameter of the Gaussian, not of the mean of a measurement, which does not
even make sense here, since xi is a single measurement). The parameter Σ is a sym-
metric positive definite matrix called the covariance matrix. If off-diagonal entry
Σ ij is nonzero, then xi and xj are correlated. In the case where all xi are independent,
all off-diagonal terms in the covariance matrix are zero, and the multidimensional
Gaussian distribution reduces to

f(x | μ , σ ) =
n∏

i=1

1√
2π σ 2

i
exp

[
−(xi − μ i)

2

2σ 2
i

]
, (2.7)

where σ 2
i is the ith entry along the diagonal of the covariance matrix. This is the

variance associated with measurement i. So, if all independent measurements have
the same variance andmean, which is to say that themeasurements are independent
and identically distributed (i.i.d.), the multi-dimensional Gaussian reduces to

f(x | μ , σ ) =
(

1
2π σ 2

)− n
2

exp

[
− 1

2σ 2

n∑
i=1

(xi − μ )2

]
. (2.8)
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2.5 The likelihood revisited: and another parameter

For the purposes of this demonstration of parameter estimation, we assume the
Gaussian distribution is a good choice for our likelihood for repeated measurements.
We have to decide how the measurements are related to specify how many entries
in the covariance matrix we need to specify as parameters. It is often the case that
the measurements i.i.d, so that only a single mean and variance are specified. So, we
choose our likelihood to be

f(x | μ , σ ) =
(

1
2π σ 2

) n
2

exp

{
− 1

2σ 2

n∑
i=1

(xi − μ )2

}
. (2.9)

By choosing this as our likelihood, we are saying that we expect our measurements
to have a well-defined mean μ with a spread described by the variance, σ 2.

But wait a minute; we now have another parameter, σ , beyond the one we’re
trying tomeasure. So, our statisticalmodel has two parameters, and Bayes’s theorem
now reads

g(μ , σ | x) = f(x | μ , σ ) g(μ , σ )
f(x) . (2.10)

Afterwe compute the posterior, we can still find the posterior probability distribution
we are after by marginalizing.

g(μ | x) =
∫ ∞

0
dσ g(μ , σ | x). (2.11)

2.6 Choice of prior

Because the evidence f(x) is entirely determined by the likelihood, prior, and normal-
ization condition of the posterior, we need only to specify the likelihood and prior to
get the posterior. We have chosen a Gaussian distribution for our likelihood, so now
we need to specify g(μ , σ ). The prior encodes what we know about the parameters
before the experiments. The prior may be informed by previous experiments, as we
discussed in section 1.9. We will talk in depth in the next lecture about choices of
priors. For the present, we will assume that μ and σ are independent such that

g(μ , σ ) = g(μ ) g(σ ). (2.12)

Further, we will assume a Uniform prior for μ and a Jeffreys prior for σ . Specifi-
cally,

g(μ ) =

 (μmax − μmin)
−1 μmin < μ < μmax,

0 otherwise,
(2.13)
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and

g(σ | I) =

 (ln(σmax/σmin) σ )−1 σmin < σ < σmax

0 otherwise.
(2.14)

For g(μ ), all values between μmin and μmax are equally likely. We have put bounds
on the values that μ can take, and we will work in the limit where these bounds are
far from any peak in the likelihood in what follows. Similarly, for g(σ ), all values of
the logarithm of σ are equally likely (as wewill derive in the next lecture), and it, too,
has bounds.

2.7 The posterior

Now that we have specified the likelihood and prior, we have the posterior.

g(μ , σ | x) = c
σ n+1 exp

[
− 1

2σ 2

n∑
i=1

(xi − μ )2

]
, (2.15)

where we have absorbed all constants in to the normalization constant c6.

So, we are done! We have now updated our knowledge of μ and σ . We could
just plot the posterior distribution. We could show it as a contour plot in the μ -σ
plane, for instance.

But, it would be nice to get the posterior into a bit of a cleaner form. We can
show, after some algebraic grunge, that

n∑
i=1

(xi − μ )2 = n(x̄ − μ )2 + nr2, (2.16)

where

r2 =
1
n

n∑
i=1

(xi − x̄)2 (2.17)

is the sample variance and

x̄ =
1
n

n∑
i=1

xi (2.18)

6We do this here for convenience, but when we do model selection later on, we will have to com-
pute the evidence, so we should be careful about the normalization constants of the priors throughout
our calculations.
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is the sample mean. Thus, we have

g(μ , σ | x) = c e−nr2/2σ 2

σ n+1 exp
[
−n(μ − x̄)2

2σ 2

]
. (2.19)

In this form, we immediately see that, regardless the value of σ , the most probable
value of μ is x̄. This is perhaps not surprising that the most probable value of μ is
the sample mean, but it is pleasing how nicely it falls out of the analysis.

Now, it would really like to get a summary of the posterior to be able to report
some nice numbers, like the most probable value of μ , x̄, instead of a plot.

2.7.1 The mean μ

We wanted to get g(μ | x) in the first place. As we said before, we can get that by
marginalizing over σ .

g(μ | x) =
∫ ∞

0
dσ g(μ , σ | x) (2.20)

= c
∫ ∞

0

dσ
σ n+1 exp

[
−n(μ − x̄)2 + nr2

2σ 2

]
.

This integral is a little gnarly, but we can evaluate it. We end up getting

g(μ | x) ∝
(

1 +
(μ − x̄)2

r2

)− n
2

∝

( n∑
i=1

(xi − μ )2

)− n
2

. (2.21)

I have written the expression in two equivalent forms because it is sometimes more
convenient to use one or the other. They are proportional, which you can verify for
yourself. For now, we’ll use the first expression, since it is convenient for computing
the marginalized posteriors. We can integrate this to get the normalization constant,
giving

g(μ | x) =
Γ
(n

2

)
√

π Γ
(n−1

2

) 1
r

(
1 +

(μ − x̄)2

r2

)− n
2

. (2.22)

The normalization contains gamma functions. This distribution has a name. It is
the Student-t distribution, albeit with a nonstandard parametrization. As we now
know, it describes the mean of a Gaussian distribution with unknown variance from
which the data were drawn. As written, the Student-t distribution above is said to
have n − 1 degrees of freedom.

As we have already determined, the most probable value of μ is x̄. We would like
to describe an error bar7 for this parameter μ . Since we know its posterior, the error

7I’m using the term “error bar” loosely here. We will sharpen this definition later in the course.
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bar is just some summary of the posterior distribution. We could report the error bar
to contain the set of values of μ , centered on x̄, that contain a given percentage of
the probability.

The common practice for getting the error bar is to approximate the posterior
distribution as Gaussian and report intervals based on the standard deviation of the
Gaussian approximation. To get a Gaussian approximation, we expand the logarithm
of posterior probability distribution function in a Taylor series about its maximum.

ln g(μ | x) = constant− n
2

ln
(

1 +
(μ − x̄)2

r2

)
(2.23)

≈ constant− n(μ − x̄)2

2r2 . (2.24)

Exponentiating and evaluating the normalization constant yields

g(μ | x) ≈ 1√
2πr2/n

exp
[
−(μ − x̄)2

2r2/n

]
, (2.25)

a Gaussian distribution with mean x̄ and variance r2/n. Recall that r2 is the sample
variance, so the variance of the Gaussian approximation of the posterior distribution
is the sample variance divided by n. The quantity r/

√
n is referred to as the standard

error of the mean, which is often how error bars are reported. We now know that
it describes the width of the (Gaussian approximation of the) posterior distribution
describing the parameter value we sought to measure.

2.7.2 The variance σ 2

Often overlooked is an estimate for the variance. Remember, whenwe tookmeasure-
ments, we did not assumewe knew the variance of themeasurements. Wewould also
like an estimate of it.

We take a similar approach. We marginalize the full posterior over μ .

g(σ | x) =
∫ ∞

−∞
dμ g(μ , σ | x). (2.26)

The integral is again doable, but also again a bit gnarly. The result is

g(σ | x) = c
σ n exp

[
− nr2

2σ 2

]
. (2.27)

We can compute the normalization constant, which involves a little messy integra-
tion, giving

g(σ | x) =
(
nr2)(n−1)/2

2(n−3)/2 Γ
(n−1

2

)
σ n exp

[
− nr2

2σ 2

]
. (2.28)
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We can find the most probable σ (note that the normalization constant is not nec-
essary for this calculation). This is found by finding the value of σ for which the
derivative of the log posterior is zero.

d
dσ ln g(σ | x) = d

dσ

(
−n ln σ − nr2

2σ 2

)
= − n

σ +
nr2

σ 3 . (2.29)

This is zero when σ 2 = r2, or

σ 2 =
1
n

n∑
i=1

(xi − x̄)2. (2.30)

We can also compute a confidence interval on the parameter σ . Note, though,
that its distribution, g(σ | x), is not symmetric, as seen in Fig. 2.
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Figure 2: The posterior distribution of σ with r = 1 for various values of n. It
becomes more symmetric as n grows.

Given that the distribution is not symmetric, we might want to provide a point
estimate for σ using expectation values, instead of finding the most probable value.
The integrals are nasty, but can be evaluated.

⟨σ ⟩ =
∫ ∞

0
dσ σ g(σ | x) =

Γ
(n−2

2

)
Γ
(n−1

2

) √n
2

r. (2.31)

Alternatively, we could compute the expectation value for σ 2,

⟨σ 2⟩ =
∫ ∞

0
dσ σ 2 g(σ | x) = n

n − 1
r2 =

1
n − 1

n∑
i=1

(xi − x̄)2, (2.32)
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which may be familiar to you as the so-called sample variance, or the unbiased esti-
mate of the variance. Really, by choosing to report the most probable value of σ , the
⟨σ ⟩, or

√
⟨σ 2⟩, we are just choosing one property of g(σ | x) to report. We actually

know the whole distribution, though, so whatever we choose is just a summary of
it. These summaries are nevertheless useful, since they can concisely describe the
posterior. For a Gaussian example like this, everything is nicely behaved. As we will
later see, computing summary statistics without investigating the whole posterior
can be a risky enterprise, and not advised.
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