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3 Constructing Bayesian models

In the last lecture, we saw how to perform parameter estimation for repeated mea-
surements with a Gaussian likelihood and prior that goes like the inverse of the stan-
dard deviation of the Gaussian. Most of last lecture was then finding ways to sum-
marize the posterior. We saw, and this is generally true, that we need only to specify
the likelihood and prior to build the statistical model. In this lecture, we will discuss
ways to build a statisticalmodel. Wewill do this using two examples, learning general
principles as we work through them.

3.1 Example 1: Mitotic spindle size

Matt Good and coworkers (Good, et al., Science, 342, 856–860, 2013) developed
a microfluidic device where they could create droplets of cytoplasm extracted from
Xenopus eggs and embryos (see Fig. 3). A remarkable property aboutXenopus extract
is thatmitotic spindles spontaneously form; the extracted cytoplasmhas all the ingre-
dients to form them. This makes it an excellent model system for studying spindles.
With their device, Good and his colleagues were able to study how the size of the cell
affects the dimensions of the mitotic spindle; a simple, yet beautiful, question. The
experiment is conceptually simple; they made the droplets and then measured their
dimensions and the dimensions of the spindles using microscope images.

the absence of growth (9). Although micrometer-
scale organelles and intracellular structures have
been shown to adapt and function across a wide
spectrum of cell sizes (10–14), mechanisms of
size scaling remain poorly understood.

We focused on the mitotic spindle, a dynamic
bipolar structure consisting of microtubules and
many associated factors that must be appropri-
ately sized to accurately distribute chromosomes
to daughter cells. During development, spindle
size correlates with cell size in the embryos of
invertebrates (15, 16), amphibians (9) (fig. S1),
andmammals (17). However, it is unknownwheth-
er spindle size is governed by compositional
changes as part of a developmental blueprint or
whether spindle size is coupled directly to phys-
ical properties of the cell, such as size and shape.
Although molecular mechanisms of spindle size
regulation have been proposed (9–13), the exis-
tence of a causal link between cell size and spindle
size remains unclear.

Because of the difficulty of modulating cell
size in vivo, we investigated spindle size scaling

by developing an in vitro system of cell-like
droplets of varying size containing Xenopus egg
or embryo cytoplasm. Xenopus egg extracts tran-
sit the cell cycle in the absence of cell boundaries
and recapitulate many cell biological activities
in vitro, including spindle assembly (18, 19). To
match cell size changes during Xenopus embryo-
genesis, we tuned compartment volume 1,000,000-
fold by usingmicrofluidic systems (Fig. 1A and fig.
S2). A polyethylene glycol (PEG)–ylated stearate
served as a surfactant to prevent droplets from
coalescing and to prevent cytoplasmic proteins
from interacting with the boundary (Fig. 1A).

Metaphase spindle length and width scaled
with droplet size in vitro (Fig. 1, B and C, and fig.
S3). Spindles, which normally have a steady-
state length of 35 to 40 mm in bulk egg extract
(20), became smaller as the size of the encapsu-
lating droplet decreased (Fig. 1C and fig. S3).
Spindle size scaling was roughly linear in droplet
diameters ranging from 20 to 80 mm (Fig. 1C),
whereas in larger droplets spindle size matched
that of unencapsulated egg extracts. Spindle as-

sembly efficiency decreased in very small drop-
lets and dropped to zero in droplets with a diameter
less than 20 mm (fig. S3, C and D). Thus, two
regimes of scaling were observed: one in which
spindle size was coupled to droplet diameter and
a second in which they were uncoupled. These
two regimes were similar to spindle scaling trends
observed in vivo during early Xenopus embryo-
genesis (Fig. 1, C and D, and fig. S1B) (9). Thus,
compartmentalization is sufficient to recapitulate
spindle size scaling during embryogenesis in
the absence of any developmental cues (e.g.,
transcription).

We considered two possible explanations for
the scaling of spindle size with cell or droplet
size. The position of cell or droplet boundaries
could directly influence spindle size through in-
teraction with microtubules. Alternatively, cyto-
plasmic volume could limit the amount ofmaterial
for assembly, which has been proposed for cen-
trosome size regulation inCaenorhabditis elegans
(12, 21) and spindle size regulation in mouse
and sea snail embryos (17, 22). To distinguish
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Fig. 1. Spindle length scaleswith compartment size in vitro and in vivo.
(A) System for creating cell-like compartments in vitro, including a passivated
boundary, cell-free cytoplasm capable of assembling metaphase spindles (Xenopus
egg or embryo extracts), and tunable compartment size. PHS, polyhydroxy-
stearate. (B) Spindles in droplets, compressed to improve image quality, corre-
sponding to spheres 80, 55, and 40 mm in diameter. Uneven shading is due to
image stitching. Scale bars indicate 20 mm. (C) Spindle length in encapsulated
X. laevis egg extract scaled with droplet size in vitro. (Left) Linear scaling regime.
(Inset) Scaling prediction. Raw data (orange circles) and average spindle length

(orange squares) T SD across 5-mm intervals in droplet diameter are shown.
P value (<10−60) and R2 (0.34) calculated from linear fit to raw droplet data in
20- to 80-mm diameter range. (Right) Full scaling curve in vitro. For com-
parison, gray bars indicate two standard deviations from average embryo data
in (D). (D) Spindle length scaling in vitro mirrored length scaling in the X. laevis
embryo through stage 8, with similar linear scaling regimes and a plateau where
spindle size was uncoupled from compartment size. Raw data from embryos
across 5-mm intervals in cell diameter (gray circles) and average spindle length
(black squares) T 2 SD (thick error bars) are shown.
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REPORTS

Figure 3: Schematic of spindle size experiment. Scale bars are 20 µm. Taken
from Fig. 1 of Good, et al., Science, 342, 856–860, 2013.

The question the authors were after was about how the spindle size scaled with
the diameter of the droplet. The data they acquired are shown in Fig. 4.

3.1.1 The cartoon model

Recall in lecture 1 that wewent through the process of developing a statistical model,
starting with a cartoon model, mathematizing it, and then making a statistical model
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Figure 4: Spindle length versus droplet diameter.

describing how the data might vary from the mathematical model due to naturally
occurring variability and that in the experiments. Good and coworkers hypothesized
that the length of spindles is regulated by the total amount of tubulin available to
make them. Specifically, the three key principles of their “cartoon” model are:

1. The total amount of tubulin in the droplet or cell is conserved.

2. The total length of polymerized microtubules is a function of the total tubulin
concentration after assembly of the spindle. This results from the balances of
microtubule polymerization rate with catastrophe frequencies.

3. The density of tubulin in the spindle is independent of droplet or cell volume.

3.1.2 The mathematical model

From these principles, we need to derive a mathematical model that will provide
us with testable predictions. The derivation follows, and you may read it if you are
interested. Since our main focus here is building a statistical model, you can skip
ahead to equation (3.14), where we define a mathematical expression relating the
spindle length, l to the droplet diameter, d, which depends on two parameters, γ
and ϕ .

Principle 1 above (conservation of tubulin) implies

T0V0 = T1(V0 − Vs) + TsVs, (3.1)

whereV0 is the volume of the droplet or cell, Vs is the volume of the spindle, T0 is the
total tubulin concentration (polymerized or not), T1 is the tubulin concentration in
the cytoplasm after the the spindle has formed, andTs is the concentration of tubulin
in the spindle. If we assume the spindle does not take up much of the total volume
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of the droplet or cell (V0 ≫ Vs, which is the case as we will see when we look at the
data), we have

T1 ≈ T0 −
Vs

V0
Ts. (3.2)

The amount of tubulin in the spindle can we written in terms of the total length of
polymerized microtubules, LMT as

TsVs = αLMT, (3.3)

where α is the tubulin concentration per unitmicrotubule length. (Wewill see that it
is unimportant, but from the known geometry of microtubules, α ≈ 2.7 nmol/µm.)

We now formalize assumption 2 into a mathematical expression. Microtubule
length should grow with increasing T1. There should also be a minimal threshold
Tmin where polymerization stops. We therefore approximate the total microtubule
length as a linear function,

LMT ≈
{

0 T1 ≤ Tmin

β (T1 − Tmin) T1 > Tmin.
(3.4)

Because spindles form inXenopus extract, T0 > Tmin, so there exists a T1 with Tmin <
T1 < T0. Thus, going forward, we are assured that T1 > Tmin. So, we have

Vs ≈ α β T1 − Tmin

Ts
. (3.5)

With insertion of our expression for T1, this becomes

Vs ≈ α β
(

T0 − Tmin

Ts
− Vs

V0

)
. (3.6)

Solving for Vs, we have

Vs ≈
α β

1 + α β/V0

T0 − Tmin

Ts
=

V0

1 + V0/α β
T0 − Tmin

Ts
. (3.7)

We approximate the shape of the spindle as a prolate spheroid with major axis length
l and minor axis length w, giving

Vs =
π
6

lw2 =
π
6

k2l3, (3.8)

where k ≡ w/l is the aspect ratio of the spindle. We can now write an expression for
the spindle length as

l ≈
(

6
πk2

T0 − Tmin

Ts

V0

1 + V0/α β

) 1
3

. (3.9)
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For small droplets, with V0 ≪ α β , this becomes

l ≈
(

6
πk2

T0 − Tmin

Ts
V0

) 1
3

=

(
T0 − Tmin

k2Ts

) 1
3

d, (3.10)

where d is the diameter of the spherical droplet or cell. So, we expect the spindle
size to increase linearly with the droplet diameter for small droplets.

For large V0, the spindle size becomes independent of droplet size;

l ≈
(

6α β
πk2

T0 − Tmin

Ts

) 1
3

. (3.11)

We can define two parameters to describe the data,

γ =

(
T0 − Tmin

k2Ts

) 1
3

(3.12)

ϕ =

(
6α β

π

) 1
3

. (3.13)

We assume that γ and ϕ are the same for all data. We can rewrite the general model
expression in terms of these parameters as

l(d; γ , ϕ ) ≈ γd
(1 + (d/ϕ )3)

1
3
. (3.14)

For small and large droplets, respectively, we have

l ≈ γd for d/ϕ ≪ 1, (3.15)

l ≈ γ ϕ for d/ϕ ≫ 1. (3.16)

Note that the expression for the linear regime gives bounds for γ . Obviously, γ > 0.
Because l ≤ d, lest the spindle not fit in the droplet, we also have γ ≤ 1. The
parameter ϕ is independent of the system geometry, so it only has the physical lower
bound of ϕ > 0.

3.1.3 A comment on the model parameters

We went through some algebraic manipulations to get our mathematical model in
a form with two parameters. We want to try to identify independent parameters in
your mathematical before doing regression analysis. In a trivial example, imagine
someone proposed the following model to use in a regression on (x, y) data:

22



y = ax + bx + c. (3.17)

Obviously, it would be silly to have both a and b as regression parameters, and
we should instead define a new parameter d = a + b and use that as a regression
parameter. In the case of spindle length, we had parameters T0, Tmin, Ts, k, α , and
β , but, as we saw, we can only resolve two parameters, γ and ϕ . Furthermore, if we
happen to be in the linear regime, ϕ does not enter the expressions, so we obviously
cannot resolve it. Similarly, we can only determine ϕ if we are in the plateau regime.

3.1.4 The statistical model: The likelihood

Wehave amathematical model, so nowwe are left to specify the likelihood and prior.
We will start with the likelihood. The data are pairs of droplet diameters and spindle
lengths. We denote one such pair as (di, li), and the whole data set as D = d, l. The
parameters are θ = γ , ϕ . So, the likelihood is f(D | θ ) = f(d, l | γ , ϕ , θ s), where
θ s are the parameters associated with the statistical model (as opposed to γ and ϕ ,
which are associated with the mathematical model).

We need a probabilistic model about how the observe data might vary stochasti-
cally about the mathematical model. We can write

li = l(di; γ , ϕ ) + ei, (3.18)

where ei is how much the measured spindle length differs from the predicted length
for the measured drop diameter. So, we are left to choose how ei is distributed.

Because many processes come together to make a spindle, and then to measure
its length, it is reasonable to assume that ei is Gaussian distributed. Themean of this
Gaussian should be zero, since on average, the model should fit the data. One way
to write this is

ei ∼ Norm(0, σ i). (3.19)

This reads as, “The error ei is Normally distributed with mean zero and standard
deviation σ i.” This notation is commonly used to make a sentence like the one I just
quoted more concise. We could also write out the full PDF.

f(ei | σ i) =
1√

2π σ 2
i
e−e2

i /2σ 2
i . (3.20)

Thus, for a single data point, we have

f(di, li | γ , ϕ , σ i) =
1√

2π σ 2
i
exp

[
−(li − l(di; γ , ϕ ))2

2σ 2
i

]
. (3.21)
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This could be equivalently written as

li ∼ Norm(l(di; γ , ϕ ), σ i). (3.22)

Now, if eachmeasurement is independent, the likelihoods of each data pointmul-
tiply, giving

f(d, l | γ , ϕ , {σ}) = 1
(2π)n/2

∏
i σ i

exp

[
−
∑

i

(li − l(di; γ , ϕ ))2

2σ 2
i

]
,

(3.23)

where n is the number of observations of di, li pairs we have and {σ} represents the
σ i values. If these are all equal, we have a single σ , which gives a likelihood of

f(d, l | γ , ϕ , σ ) = 1
(2π σ 2)n/2 exp

[
− 1

2σ 2

∑
i

(li − l(di; γ , ϕ ))2

]
. (3.24)

This can equivalently be written as

li ∼ Norm(l(di; γ , ϕ ), σ ) ∀i. (3.25)

We thus have our likelihood. We have assumed that each measurement is indepen-
dent of the others and that the variation from the model is homoscedastic, which
means that the magnitude of the error of measured data from the model is the same
for all data points (as opposed to heteroscedastic).

3.1.5 Choice of prior

We are now left to the choice of the prior. Before we embark on the journey of choos-
ing the prior, I quote Efron and Hastie from their book, Computer Age Statistical In-
ference.

For 200 years, however, two impediments stood between Bayesian the-
ory’s philosophical attraction and its practical application.

1 In the absence of relevant past experience, the choice of a prior dis-
tribution introduces an unwanted subjective element into scientific
inference.

2 Bayes’ rule looks simple enough, but carrying out the numerical
calculation of a posterior distribution often involves intricate higher-
dimensional integrals.
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Wewill deal with the second impediment in coming weeks when we useMarkov
chainMonteCarlo to handle the intricate integrals. Our goal now is to come upwith
a prior distribution that avoids subjectivity. As Efron and Hastie called this process
an impediment, we proceed with trepidation.

The prior encodes our knowledge about the parameters of the statistical model.
In this case, we have three parameters, γ and ϕ , which entered through the physical
model, and σ which entered through our modeling of the variability inherent in the
system and in measurement. So, we need to specify g(γ , ϕ , σ ).

Independence of priors. Our first step on the journey to specifying g(γ , ϕ , σ ) is
to note that these parameters should be independent of each other. The parameter
γ depends only on the aspect ratio of spindles, and the total concentration of tublin
in the cell, the concentration of tubulin in the cytoplasm, and the critical concentra-
tion of tubulin where microtubule growth arrests. The parameter ϕ depends on the
concentration of tubulin in a singlemicrotubule (known from the geometry ofmicro-
tubules) and a constant of proportionality between microtubule length and cytoplas-
mic tubulin concentration. Because they depend on distinct, independent physical
quantities, the parameters γ and ϕ are independent of each other. Similarly, the
parameter σ describes how much the spindle length differs from the prediction. It
is a bit harder to state that this is independent of γ and ϕ . However, doing so is a
less egregious approximation, perhaps, than assuming homoscedasticity in the first
place. So, we will proceed assuming all three parameters are independent, so

g(γ , ϕ , σ ) = g(γ ) g(ϕ ) g(σ ). (3.26)

Uninformative priors. If we want to reduce subjectivity in our prior, we want to
remain as ignorant as possible about the parameters beforewe see the data. However,
we are not completely ignorant. For example, we know for sure that 0 ≤ γ ≤ 1 based
on physical arguments stated at the end of section 3.1.2. This should also be encoded
in our prior, such that g(γ ) = 0 for all negative γ and for all γ > 1.

If we want to avoid subjectivity, we might say, then, that any value of γ on the
interval from zero to one is equally likely as any other. In this case, we have

g(γ ) =
{

1 0 ≤ γ ≤ 1,

0 otherwise,
(3.27)

or

γ ∼ Uniform(0, 1), (3.28)

which says that the prior distribution of γ is Uniform on the interval [0, 1]8. This no-
tion of assigning equal probability to all possibilities is often referred to as Laplace’s

8Strictly speaking, we should have that γ > 0, not γ ≥ 0, since a zero value for γ under this
model would mean that spindles always have zero length.
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Principle of Insufficient Reason.

Unlike γ , ϕ has no upper bound. Yes, it must be positive, but the upper bound
is not apparent. Remember, though, that the prior contains all information we know
before the experiment. For example, we know that the mitotic spindle in a one-cell
Xenopus embryo do not span the entire cell, and that the cell is about 2 mm across
(huge!). So, the absolute maximum we could expect for γ ϕ is 2 mm. So there is a
reasonable maximum we could choose.

So, we could choose aUniform prior for ϕ on the interval of, say zero to tenmm.
But is this really uninformative? John Venn and Ronald Fisher, famous attackers of
a Bayesian approach, would say no. They could argue that we could equally well
have chosen to to parametrize the model in terms of ξ = ϕ−3 instead so that the
theoretical expression for spindle length is

l(d; γ , ϕ ) =
γd

(1 + ξd3)
1
3
. (3.29)

If we chose a Uniform prior on ϕ , then the prior on ξ is no longer Uniform. Recall
the change of variables formula from multivariate calculus.

g(ξ ) =
∣∣∣∣dϕ
dξ

∣∣∣∣ g(ϕ ). (3.30)

Taking g(ϕ ) to be a constant (which it is for a Uniform distribution), we perform the
change of variables, to get

g(ξ ) =

∣∣∣∣∣− ξ− 4
3

3

∣∣∣∣∣ g(ϕ ) = constant · ξ− 4
3 , (3.31)

which is no longer flat. So perhaps in cases like this, a Uniform prior is not actually
uninformative; we are biasing toward a certain parametrization. We desire trans-
formation invariance, meaning that the prior should be the same functional depen-
dence on ϕ if we transform the parameter in a certain way.

Generically, thismeans that if we have a set of parameters θ that are transformed
into a new set of parameters ζ , we should choose g(θ ) such that∣∣∣∣∂(ζ 1, ζ 2, . . .)

∂(θ 1, θ 2, . . .)

∣∣∣∣ g(ζ (θ )) (3.32)

has the same functional form asg(θ ), up to amultiplicative constant. The first factor
in this equation denotes the Jacobian, which is the absolute value of the determinant
of the Jacobi matrix.

So, in the present example let’s say we want our prior to be invariant if we trans-
form ϕ to a new variable ξ such that ξ = ϕ a. That is, we want

g(ξ (ϕ )) =

∣∣∣∣dϕ
dξ

∣∣∣∣ g(ϕ ) = aϕ a−1g(ϕ ) (3.33)
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to have the same ϕ dependence as g(ϕ ). If we pick g(ϕ ) = c/ϕ , where c is a
constant, we see that this is indeed the case.

g(ξ (ϕ )) =
ac
ϕ , (3.34)

which has the same ϕ -dependence.

This kind of prior, which is uninformative maintaining transformational invari-
ance like we have just described, is a case of a Jeffreys prior (discussed very briefly
at the end of this lecture). In fact, in portions of the literature, including in Sivia’s
book, such a prior, g(θ ) ∝ 1/θ , is just called “a Jeffreys prior.” For the purposes of
this course, this is what we mean when we refer to a Jeffreys prior.

It makes sense, then, to also parametrize σ with a Jeffreys prior, since we could
also have chosen to parametrize the likelihood with τ = σ−1.

Proper and improper priors. Our prior for γ , being Uniform on the interval from
zero to one, is proper, in the sense that it is properly normalized. If we did not have
bounds on it, we would call it an improper prior, since it cannot be normalized. The
same is true for the Jeffreys prior. If we do not define bounds for a prior of the form
g(θ ) ∝ 1/θ , it cannot be normalized, since∫ ∞

b

dθ
θ (3.35)

diverges for any positive b, as does∫ b

0

dθ
θ . (3.36)

Usually, this is not a problem for the problem of parameter estimation, that is
computing g(θ | D). This is because for extreme values of the parameters θ , the
likelihood typically is vanishingly small. Recall, the posterior is

g(θ | D) =
f(D | θ ) g(θ )∫
dθ f(D | θ ) g(θ ) . (3.37)

Since f(D | θ ) typically is tiny for extreme parameter values, it overwhelms the
finiteg(θ ) in the numerator, and in the integral in the denominator. Furthemore, any
normalization constants forg(θ ) cancel outwith those appearing in the denominator
while computing the posterior.

While this is convenient for the parameter estimation problem, as we will see in
later lectures, we do need to exactly compute the evidence,∫

dθ f(D | θ ) g(θ ), (3.38)
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when doing model selection. So, we should bound and normalize the priors with
reasonable bounds. We can write our prior for our example problem with spindle
lengths as

g(γ , ϕ , σ ) = g(γ ) g(ϕ ) g(σ ), (3.39)

with

g(γ ) =
{

1 0 ≤ γ ≤ 1,

0 otherwise,
(3.40)

g(ϕ ) =

{
1

ϕ ln(ϕmax/ϕmin)
ϕmin ≤ ϕ ≤ ϕmax,

0 otherwise,
(3.41)

g(σ ) =
{

1
σ ln(σmax/σmin)

σmin ≤ σ ≤ σmax,

0 otherwise.
(3.42)

Alternatively, we could write this as

γ ∼ Uniform(0, 1), (3.43)

ϕ ∼ Jeffreys(ϕmin, ϕmax), (3.44)

σ ∼ Jeffreys(σmin, σmax). (3.45)

3.1.6 Choosing bounds

We saw that we could choose the bounds on γ with physical arguments. We would
like to make similar choices for bounds for ϕ and σ . We already made a physical
argument based on the size of Xenopus embryos that the maximal ϕ cannot be more
than a fewmillimeters. Its lower bound cannot be zero because this would mean that
the spindle length would always be zero. We might instead choose a lower bound to
be something like 10 nanometers, about the size of a microtubule nucleus.

Choosing bounds on σ can be a bit more challenging, because it is describing
variability in the experiment. Wemight choose an upper bound close to the maximal
size of a spindle, sincewewould not get variation bigger than that. So, onemillimeter
is plenty big for an upper bound. For the lower bound, we might again choose 10
nanometers, as this is about the size of four or five tubulin diameters, which should
be the smallest fluctuation we could imagine seeing.
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3.1.7 Computing the posterior

Our specification of the posterior is now complete. We have specified the likelihood
and prior. The evidence can be calculated by integrating the product of the likelihood
and prior over all parameter values. Actually computing, plotting, and summarizing
the posterior is a separate challenge. Specifically, it is impediment number 2 laid out
by Efron and Hastie. This is the subject of the next few weeks of the course.

3.2 Example 2: Worm reversals

In Homework 3.3, we consider reversals upon exposure to blue light of C. elegans
that have a Channelrhodopsin in a specific neuron. There is some probability p of
reversal. Say we do n trials and observe r reversals. The likelihood is Binomially
distributed according to the story of the Binomial distribution. So, Bayes theorem
reads

g(p | n, r) = f(r | p, n) g(p)
f(r | n) , (3.46)

where

f(r | p, n) = n!
(n − r)!r! pr(1 − p)n−r, (3.47)

which we could alternatively write as

r | p, n ∼ Binom(n, p), (3.48)

(Note that I wrote g(p) instead of g(p | n) because they are equal; n has no bearing
on p.)

As we consider our choice of prior, g(p), Think back to the first lecture when we
talked about Bayes’s theorem as a model for learning. The idea there was that we
know something before (a priori) acquiring data, and then we update our knowledge
after (a posteriori). So, we come in with the prior and out with the posterior after ac-
quiring data. It mightmake sense, then, that the prior and the posterior distributions
are the same. That is to say they are the same distribution, but with different param-
eters. The parameters get updated going from the prior to the posterior. When this
is the case, the prior is said to be conjugate to the likelihood. This makes sense:
the likelihood determines the relationship between the prior and the posterior, so it
should determine the functional form of the prior/posterior such that they are the
same.

3.2.1 Conjugate priors

What functional form can we choose for the prior g(p) such that the posterior g(p |
n, r, I)has the same functional form? This requires some seriousmathematicalwork,
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but the answer is the Beta distribution. The Beta distribution is parametrized by two
positive parameters, a and b,

g(p | a, b) = pa−1(1 − p)b−1

B(a, b) , (3.49)

where

B(a, b) = Γ (a)Γ (b)
Γ (a + b) (3.50)

is the Beta function. The distribution is defined on the interval 0 ≤ p ≤ 1. Impor-
tantly, or a = b = 1, we get a Uniform distribution. The Uniform distribution on
the interval from zero to one is therefore a special case of the Beta distribution.

Now, if we insert a Beta distribution for the posterior and prior, we have

g(p | n, r, a, b) = f(r | p, n) g(p | a, b)
f(r | n) (3.51)

=
1

f(r | n)
n!

(n − r)!r! pr(1 − p)n−r pa−1(1 − p)b−1

B(a, b) (3.52)

=
1

f(r | n)B(a, b)
n!

(n − r)!r! pr+a−1(1 − p)n−r+b−1. (3.53)

In looking at this expression, the only bit that depends on p is pr+a−1(1−p)n−r+b−1,
which is exactly the p-dependence of a Beta distribution with parameters r + a and
n − r + b. Because the posterior must be normalized, the posterior must be a Beta
distribution and

1
f(r | n)B(a, b)

n!
(n − r)!r! =

1
B(r + a, n − r + b) . (3.54)

We have just normalized the posterior without doing any nasty integrals! So, the
posterior is

g(p | n, r, a, b) = pr+a−1(1 − p)n−r+b−1

B(r + a, n − r + b) , (3.55)

or,

p | n, r, a, b ∼ Beta(r + a, n − r + b). (3.56)

So, we can see that conjugacy is useful. For a given likelihood, if we know its
conjugate prior, we can just immediately write down the posterior in a clear form.
The Wikipedia page on conjugate priors has a useful table of likelihood-conjugate
pairs.
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Note though that a closed form conjugate does not always exist for a given likeli-
hood, especially for complicated models, and when they do exist, they may be very
difficult to find. This does limit their utility. Further, there is no reason why a poste-
rior and prior should have the same functional form; all analysis is completely valid
without conjugacy. Sivia has stinging words about using conjugate priors: “While
we might expect our initial understanding of the object of interest to have a bear-
ing on the experiment we conduct, it seems strange that the choice of the prior pdf
should have to wait for, and depend in detail upon, the likelihood function.”

3.3 The impediment is not resolved

Wetried to be as objective as possible in choosing our priors. We intentionally tried to
be uninformative, and took into account transformation invariance. This has flaws,
since it is mathematically impossible to come up with a prior that can be invariant
to all transformations. There are other strategies for choosing uninformative priors.
Among them are

• Using what is generically called a Jeffreys prior by computing the Fisher infor-
mation from the likelihood.

• Using the principle of maximum entropy. Entropy can be thought of as a for-
mal metric of ignorance, which we wish to maximized when being objective.
Sivia talks about this in Chapter 5.

Both of these methods are outside the scope of this course, but they are important
to consider when choosing priors.

Now consider Sivia’s comment I just quoted. And now consider the title of a
recent paper by Gelman, Simpson, and Betancourt, “The prior can generally only
be understood in the context of the likelihood.” Some of the section headings in that
paper are also gold, like “Uniform priors are not a panacea and can do unbounded
damage.”

So, obviously there is disagreement about constructing priors. One the one hand,
we want to be as objective as possible in predicting priors. That said, we almost
always do know something about parameter values a priori. We really should encode
that in the prior. Furthemore, a probability density function is just a pdf. It only
becomes a prior when it is connected to a likelihood. So we may need to this with
some degree of pragmatism.

It is very hard to be truly informative in more complicated models, such as the
very powerful hierarchical models we will work with later in the class. Furthermore,
when using flat priors, the other impediment comes back in. Flat priors can really
wreak havoc onMarkov chainMonte Carlo (MCMC) samplers in hierarchical mod-
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els, thereby exacerbating the difficulty in computing the posterior. (If you cannot
compute it, what good is it?)

It’s probably no coincidence that Gelman and coworkers are lead developers on
one of themajorMCMCpackages, called Stan. In fact, the Stanwiki has some guide-
lines about choice of priors, which run quite contradictory to what we have just dis-
cussed here. Specifically, as of October 11, 2017, there is this: “Some principles we
don’t like: invariance, Jeffreys, entropy.” The Stan developers are obviously going
to be more pragmatic in their views, since they are in the business of actually com-
puting posteriors. They tend to favor weakly informative priors; things like broad
Gaussians. Their reasons, again quoting the Wiki,

• Weakly informative prior should contain enough information to
regularize: the idea is that the prior rules out unreasonable param-
eter values but is not so strong as to rule out values thatmightmake
sense

• Weakly informative rather than fully informative: the idea is that
the loss in precision by making the prior a bit too weak (compared
to the true population distribution of parameters or the current ex-
pert state of knowledge) is less serious than the gain in robustness
by including parts of parameter space that might be relevant.

In the end, my view is that you want to encode all of the information you confi-
dently have about parameters, and notmore, into the prior. For example, before seeing
the data, if you think that the variability inmeasured spindle length should be about a
10 microns, you could choose a weakly informative prior, like a Gaussian with mean
of one micron and standard deviation of 3 microns, and you would probably be fine.
As you can see in homework 3.4, the choice of prior often has very little effect on the
end result of your inference.
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