
BE/Bi 103: Data Analysis in the
Biological Sciences

Justin Bois

Caltech

Fall, 2017

© 2017 Justin Bois.
This work is licensed under a Creative Commons Attribution License CC-BY 4.0.

https://creativecommons.org/licenses/by/4.0/

4 The theory of Markov chain Monte Carlo

4.1 Why MCMC?

When doing Bayesian analysis, our goal is very often to compute a posterior distri-
bution, g(θ | D), where θ = {θ (1), θ (2), . . .} is a set of possibly many parameters.
However, just having an analytical expression for the posterior is of little use if we
cannot understand any properties about it. Importantly, we often want to marginal-
ize the posterior; that is, we want to integrate over parameters we are not interested
in and get simpler distributions for those we are. This is often necessary to under-
stand all but the simplest models. Doing these marginalizations requires what David
MacKay calls “macho integration,” which is often impossible to do analytically.

Furthermore, we may also want to compute expectations out of the posterior.
For example, we might want the mean, or expectation value, of parameter θ (1). If
we know the posterior, this is

E[θ (1)] =

∫
dθ θ (1) g(θ | D). (4.1)

Generally, we can compute the expectation of any function of the parameters, h(θ),
and we often want to. This is

E[h(θ)] =
∫

dθ h(θ) g(θ | D). (4.2)

So, pretty much anything we want to know about the posterior requires computation
of an integral.

MCMCallows us to sample out of an arbitrary probability distribution, which in-
cludes pretty much any posterior we could write down.9 By sampling, we mean that
we can choose values of the parameters, θ , where the probability that we choose a
given value is proportional to the posterior probability. Note that each sample con-
sists of a complete set of parameters θ ; that is a sample contains a value for θ (1), a
value for θ (2), …. We are more likely to choose samples of high probability than of
low. Using MCMC, we collect a large number of these samples.

From these samples, we can trivially performmarginalizations. Say we are inter-
ested in the marginalized distribution

g(θ (1) | D) =

(∫
dθ (2)

∫
dθ (3) · · ·

)
g(θ | D). (4.3)

9Well, not any. For some cases, we may not be able to make a transition kernel that satisfies the
necessary properties, which I describe in the following pages.

33

Given a set of MCMC samples out of g(θ | D), to get a set of samples out of
g(θ (1) | D), we simply ignore the values of θ (2), θ (3), …! Then, given the samples
of the marginalized posterior, we can plot the CDF of the marginalized posterior as
an ECDF of the samples, and the PDF of the marginalized posterior as a histogram
of the samples.

To compute expectations, the MCMC samples are again very convenient. Now,
we just approximate the integral with an average over samples.

E(h(θ)) =
∫

dθ h(θ) g(θ | D) ≈ 1
N

N∑
i=1

h(θ i), (4.4)

where θ i is the ith of N MCMC samples taken from the posterior.

It is now abundantly clear why the ability to generate samples from the posterior
is so powerful. But generating samples that actually come from the probability dis-
tribution of interest is not a trivial matter. We will discuss how this is accomplished
through MCMC.

4.2 The basic idea behind MCMC

We often draw independent samples from a target distribution. For example, we
could usenp.random.uniform(0, 1, 100) to draw 100 independent samples
from a uniform distribution on the domain [0, 1]. Generating independent samples
for complicated target distributions is difficult.

But the samples need not be independent! Instead, we only need that the sam-
ples be generated from a process that generates samples from the target distribution
in the correct proportions. In the case of the parameter estimation problem, this dis-
tribution is the posterior distribution parametrized by θ , g(θ | D). For notational
simplicity in what follows, since we know we are always talking about a posterior
distribution, we will use P(θ) for shorthand notation for an arbitrary distribution of
theta.

The approach of MCMC is to take random walks in parameter space such that
the probability that a walker arrives at point θ is proportional to P(θ). This is the
main concept and is important enough to repeat.

The approach of MCMC is to take random walks in parameter space such
that the probability that a walker arrives at point θ is proportional to P(θ).

If we can achieve such a walk, we can just take the walker positions as samples
from the distributions. To implement this random walk, we define a transition ker-
nel, T(θ i+1 | θ i), the probability of a walker stepping from position θ i in parameter
space to position θ i+1. The transition kernel defines a Markov chain, which you

34

can think of as a random walker whose next step depends only on where the walker
is right now; i.e., it has no memory.

The condition that the probability of arrival at point θ i+1 is proportional toP(θ i+1)
may be stated as

P(θ i+1) =

∫
dθ i T(θ i+1 | θ i)P(θ i). (4.5)

Here, we have taken θ to be continuous. Were it discete, we just replace the inte-
gral with a sum. When this relation holds, it is said that the target distribution is an
invariant distribution or stationary distribution of the transition kernel. When
this invariant distribution is unique, it is called a limiting distribution. We want to
choose our transition kernel T(θ i+1 | θ i) such that P(θ) is limiting. This is the case
if equation (4.5) holds and the chain is ergodic. An ergodic Markov chain has the
following properties:

1. It is aperiodic. A periodic Markov chain can only return to a given point in
parameter space after k, 2k, 3k, . . . steps, where k is the period. An aperiodic
chain is not periodic.

2. It is irreducible, which means that any point in parameter space is accessible
to the walker from any other.

3. It is positive recurrent, which means that the walker will surely come revisit
any point in parameter space in a finite number of steps.

So, if our transition kernel satisfies this checklist and equation (4.5), it will even-
tually sample the posterior distribution. We will discuss how to come up with such a
transition kernel in a moment; for now we focus on the important concept of “even-
tually” in the preceding sentence.

4.3 Tuning

Imagine for a moment that we devised a transition kernel that satisfies the above
properties. Say we start a walker at position θ 0 in parameter space and it starts walk-
ing according to the transition kernel. Most likely, for those first few steps, thewalker
is traversing a part of parameter space that has incredibly low probability. Once it got
to regions of high probability, the walker would almost never return to the region of
parameter space in which it began. So, unless we sample for an incredibly long time,
those first few samples visited are over-weighted. So, we need to let the walker walk
for a while without keeping track of the samples so that it can arrive at the limiting
distribution. This is called tuning, otherwise known as burn-in or warm up10.

10When using NUTS with PyMC3, the tuning is a bit more than just burn-in, where we simply
neglect samples. The algorithm is actively choosing stepping strategies during the tuning phase.

35

There is no general way to tell if a walker has reached the limiting distribution, so
we do not know howmany burn-in steps are necessary. There are several heuristics.
For example, Gelman and coauthors proposed generating several tuning chains and
computing theGelman-Rubin R̂ statistic,

R̂ =
variance between the chains

mean variance within the chains
. (4.6)

Limiting chains have R̂ ≈ 1, so you can use this as a metric for having achieved
stationarity. Gelman and his coauthors in their famous book Bayesian Data Analysis
suggest that |1 − R̂| < 0.1 as a good rule of thumb for stationary chains.

4.4 Generating a transition kernel: TheMetropolis-Hastings algorithm

The Metropolis-Hastings algorithm covers a widely used class of algorithms for
MCMC sampling. I will first state the algorithm here, and then we will show that
it satisfies the necessary conditions for the walkers to be sampling out of the target
posterior distribution.

4.4.1 The algorithm/kernel

Say our walker is at position θ i in parameter space.

1. We randomly choose a candidate position θ ′ to step to next from an arbitrary
proposal distribution K(θ ′ | θ i).

2. We compute theMetropolis ratio,

r =
P(θ ′)K(θ i | θ ′)

P(θ i)K(θ ′ | θ i)
. (4.7)

3. If r ≥ 1, accept the step and set θ i+1 = θ ′. Otherwise, accept the step with
probability r. If we do reject the step, set θ i+1 = θ i.

The last two steps are used to define the transition kernel T(θ i+1 | θ i). We can
define the acceptance probability of the proposal step as

α (θ i+1 | θ i) = min(1, r) = min
(

1,
P(θ i+1)K(θ i | θ i+1)

P(θ i)K(θ i+1 | θ i)

)
. (4.8)

Then, the transition kernel is

T(θ i+1 | θ i) = α (θ i+1 | θ i)K(θ i+1 | θ i). (4.9)

36

4.4.2 Detailed balance

This algorithm seems kind of nuts! How on earth does this work? To investigate
this, we consider the joint probability, P(θ i+1, θ i), that the walker is at θ i and θ i+1
at sequential steps. We can write this in terms of the transition kernel,

P(θ i+1, θ i) = P(θ i)T(θ i+1 | θ i)

= P(θ i) α (θ i+1 | θ)K(θ i+1 | θ i)

= P(θ i)K(θ i+1 | θ) min
(

1,
P(θ i+1)K(θ i | θ i+1)

P(θ i)K(θ i+1 | θ i)

)
= min [P(θ i)K(θ i+1 | θ i),P(θ i+1)K(θ i | θ i+1)]

= P(θ i+1)K(θ i | θ i+1) min
(

1,
P(θ i)K(θ i+1 | θ i)

P(θ i+1)K(θ i | θ i+1)

)
= P(θ i+1) α (θ i | θ i+1)K(θ i | θ i+1)

= P(θ i+1)T(θ i | θ i+1). (4.10)

Thus, we have

P(θ i)T(θ i+1 | θ i) = P(θ i+1)T(θ i | θ i+1). (4.11)

This says that the rate of transition from θ i to θ i+1 is equal to the rate of transition
from θ i+1 to θ i. In this case, the transition kernel is said to satisfy detailed balance.

Any transition kernel that satisfies detailed balance has P(θ) as an invariant dis-
tribution. This is easily shown.∫

dθ i P(θ i)T(θ i+1 | θ i) =

∫
dθ i P(θ i+1)T(θ i | θ i+1)

= P(θ i+1)

[∫
dθ i T(θ i | θ i+1)

]
= P(θ i+1), (4.12)

since the bracketed term is unity because the transition kernel is a probability.

Note that all transition kernels that satisfy detailed balance have an invariant dis-
tribution. (If the chain is ergodic, this is a limiting distribution.) But not all kernels
that have an invariant distribution satisfy detailed balance. So, detailed balance is a
sufficient condition for a transition kernel having an invariant distribution.

37

4.4.3 Choosing the transition kernel

There is an art to choosing the transition kernel. The original Metropolis algorithm
(1953), took K(θ i+1 | θ i) = 1. As a rule of thumb, you want to choose a proposal
distribution such that you get an acceptance rate of about 0.4. If you accept every
step, the walker just wanders around and it takes a while to get to the limiting dis-
tribution. If you reject too many steps, the walkers never move, and it again takes a
long time to get to the limiting distribution. There are tricks to “tune” the walkers
to achieve the target acceptance rate.

Gibbs sampling, which is popular, though we will not go into the details, is a
special case of aMetropolis-Hastings sampler, as is theNoU-turn sampler (NUTS),
which is an example of a Hamiltonian Monte Carlo sampler. These both result in
significant performance improvements for important subclasses of problems. The
sampler employed by emcee, the affine invariant ensemble sampler (Goodman and
Weare, J. Comp. Sci., 5, 65–80, 2000), utilizes many walkers walking at the same
time, sharing information between them. It is technically not aMetropolis-Hastings
sampler, but many of the ideas presented in this lecture there apply for ensuring that
the sampler is indeed sampling the appropriate posterior distribution.

Finally, importantly, the No U-Turn sampler and the affine invariant sample can
only handle continuous variables; they cannot sample discrete variables. Depending
on your problem, this could be a serious limitation.

In this class, we will use PyMC3, which uses NUTS. We will not delve into the
algorithmic details, but it helps to have a feel for how the algorithm works. To ed-
ucate yourself more‘ recommend Michael Betencourt’s conceptual introduction to
Hamiltonian Monte Carlo and this lecture by him on that topic.

38

https://arxiv.org/abs/1701.02434
https://arxiv.org/abs/1701.02434
https://www.youtube.com/watch?v=VnNdhsm0rJQ

