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5 Model comparison

We have spent a lot of time in the past couple of weeks looking at the problem of pa-
rameter estimation. Really, we have been stepping through the process of bringing
our thinking about a biological system into a concrete statistical model that defines a
likelihood for the data and the parametrization thereof. Writing down Bayes’s theo-
rem then gives the posterior,

(0| D) =12 2800, 61

where 6 is the set of parameters. Solving the parameter estimation problem involves
computing the posterior, which usually involves summarizing the posterior into a
form that can be processed intuitively.

5.1 Adding models to the probabilities

When we write Bayes’s theorem for the parameter estimation problem, implicit in
the definition of the likelihood is the fact that we are using a specific statistical model.
To be complete, especially in the context of model comparison, we should include
which model we’re using in the conditions of the probabilities. Let M; denote a
model i, and 6; be the set of parameters associated with M,.1° Then, we have

D|6;,M;)g(0;| M)

(5.2)

This is a more explicit description of the probabilities associated with the parameter
estimation problem.

5.2 Probabilities of models

Remember that Bayesian probability is a measure of the plausibility of any logical
conjecture. So, we can talk about the probability of models being true. So, what is
the probability that a model is true, given the observed data? Again, this is given by
Bayes’s theorem.

fID | Mi) (M)
fD) ’

This is Bayes’s theorem stated for the model comparison problem. Let’s look at each
term in turn.

g(M; | D) = (5.3)

Do not be confused by the subscript here. The i does not signify the ith parameter of a set of
parameters for a given mode. Here, it means that €; describes the set of parameters for model i.
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e g(M; | D), as we said before, is the probability that model M, is true given the
measured data.

« f(D)isanormalization constant for the posterior that is computed by marginal-
izing over all possible models

Zg(Mi |D)=1 = f(D) = Zf(D | M;) g(M;). (5.4)

 g(M;) is a measure of how plausible we thought model M; is a priori, the prior
probability for model M;. For example, if a proposed model violates a physical
conservation law, we know it is unlikely to be true even before we see the data.
In practice, we typically assign equal probability to all models we have not ruled
out prior to seeing the data.

« fID | M;) is the likelihood of observing the data, given that model J/; is true.

Asusual, we need to specify the likelihood and prior to assess the posterior proba-
bility of any given model. We already discussed how to specify the prior. We usually
assume all models are equally likely. How about the likelihood? Well, glancing at
equation (5.2), we see that the likelihood for the model comparison problem is the
evidence for the parameter estimation problem! Because the posterior in the param-
eter estimation problem, g(8; | D, M;), must be normalized, the evidence in the
parameter estimation problem, and therefore also the likelihood in the model com-
parison problem, is given by

D | M;) = /deif(D | 0:,M;)g(0; | M;). (5.5)

So, if we can compute the likelihood and priors from the parameter estimation prob-
lem and can integrate their product, we have the likelihood for the model comparison
problem.

5.3 Bayes factors and odds ratios

Computing the absolute probability of a model is difficult, since it would require con-
sidering all possible models, as is required to compute the normalization constant,
Sf(D). We therefore typically make pairwise comparisons between models. This com-
parison is called an odds ratio. It is the ratio of the probabilities of two models being
true.

 g(My) [AD | My
05 = o) [f(D | M,-J ' G6)

The first factor in the product is the ratio of our prior knowledge of the truth of the
models. If they are equally likely, this ratio is unity. The bracketed ratio is called the
Bayes factor, which is the ratio of the evidences of the respective models.
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Note that if we compute all of the odds ratios comparing a given model £ to all
others (and somehow did manage to consider all models that have nonzero probabil-
ity), we can compute the posterior probability of model M, as

_ Og

(5.7)

5.4 Approximate computation of the Bayes factor

Evaluating the integral in equation (5.5) to compute the Bayes factor is in general
difficult. If the posterior is sharply peaked, we may compute this integral using the
Laplace approximation in which we approximate the integral by the height of the
peak times its width. In one dimension, this is

AD | M;) = /deiﬂD | 0:,M;) g(0; | M)

~fID| 07, M;)g(0; | Mi) /27 57, (5-8)

where 0 is the MAP estimate, and o7 is the variance of the Gaussian approximation
of the posterior. In n-dimensions, this is

g(D| My) = / d0,f(D | 0, M) (0, | My) (5.9)

~f(D| 07, M) g(07 | M) (2x)""* \/det T, (5.10)

where ¥ ; is now the covariance matrix of the Gaussian approximation of the poste-
rior under M;. We have also denoted the number of parameters in M; tobe | 6;|. Note
that we have already computed all of factors in the above product in the parameter
estimation problem if we solved it by optimization. Therefore, we already have what
we need to compute the (approximate) odds ratio.

5.5 The factors in the odds ratio

We can now write the approximate odds ratio as the product of three factors.

0.~ (8(Mi)) (f(D| 93%)) g(07 | M) 2x) 12 /et T,
T \eMy) ) \AD | 07, M))) \ g(6; | M) 22)* \/det T, )

(5.11)

o The first term represents the prior probability of the models. This is how plau-
sible we thought the models were before the experiment.
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 The second term is a measure of the goodness of fit. In other words, it com-
ments on how probable the data are given the model and the MAP estimate.

o The third term is a ratio of Occam factors. An Occam factor is the ratio of the
volume of parameter space accessible to the posterior to that of the prior. This
is best seen by example. Consider a model M, with a single parameter where
the parameter a that has a Uniform prior. Then,

V2
Occam factor = V2zg(a* | My)o, = _veror (5.12)

Amax — Amin
Remember, o7 is the variance of the Gaussian approximation of the posterior.
So, the numerator here is the width of the posterior and the denominator is
the width of the prior.

Now, consider a model, M, with two parameters, b and c, each with Uni-
form priors. In this case, we have

1 1
* * M — ‘1
g(b € | j) bmax - bmin Cmax — Cmin7 (5 3)
and the Occam factor is
2m+/det
Occam factor = TV 22 (5.14)

(bmax - bmin)<cmax - Cmin) .
So, the volume of the parameter space accessible to the prior for model M, is
larger than for M|, so the part of the odds ratio is greater than one, favoring
the model with fewer parameters. The ratio of Occam factors is then

o (Bmax — Banin)- (5.15)

(/27 det af

Comparing the Occam factors of the two models, we see that the more param-
eters you have, the bigger the denominator of the Occam factor is, making the
Occam factor smaller. Furthermore, it is also often the case that complicated
models with lots of parameters also have smaller determinants of the covari-
ance because the multitude of parameters are “locked in” around the MAP
estimate. Thus, we see where the Occam factor gets its name, since it penal-
izes more complicated models."

This approximate calculation shows us everything that goes into the odds ratio.
Any one factor can overwhelm the others:

« What we knew before

« How well the model fits the data

« How simple the model is

"Remember that Occam’s razor states that among competing hypotheses, the one with fewest
assumptions is preferred.
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5.6 Example: Are two dafa sets from the same Gaussian distribution?

We will now look at an example. Say I do two sets of measurements of property x,
a control and an experiment. We make 7, control measurements and n, experiment
measurements. We consider two models. M, says that both the control and the
experiment are chosen from the same underlying Gaussian distribution with mean
u and variance . Model M, says that control and experiment come from different
Gaussian distributions with means y . and u ,. We wish to compare models M, and
M,. The odds ratio is

g(Ml)f(DcaDe |M1)
g(MZ)f(DcaDe |M2)7

O, = (5.16)
where D, denotes the data from the control experiment and D, denotes the data from
the experiment.

We will assume a prior that g(M;) = g(M;). Then, we are left to compute
f(D¢,D, | My) and f(D,, D, | M,). We can do this by approximate integration (see
section 4.3.1 of Sivia). Note that we assume a uniform prior on o, with 0 < ¢ <
O max- We could also try the problem with a Jeffreys prior on ¢, but I do not feel like
doing the nasty integration. The result for the odds ratio is

_ . 2—nl—n2
012 ~ O max (:umax /’tmln) ninps s (517)
V2 (m +ny)sy My
where
1

2 —\2

5= Z (x; — X)*, (5.18)
1 icD,UD,
1

si=— ) (—x), (5.19)
m i€eD;
1 _

5= Py (xi — X2)?, (5.20)
2 i€eD,

with
1

nt+ i€D,UD,
1

=—) x, (5.22)
oD,
1

Xz = — Xi. (5.23)
b,
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It seems that this question is often asked: does the experiment come from a differ-
ent process than the control? My opinion is that in most situations, the answer is an
obvious yes, and the more pertinent question is by how much they differ. Nonethe-
less, if we are asking the “if they are different” question, we can plug our data in
and easily compute the odds ratio. Be careful, though. This, too, should not be a
yes-or-no question. We should not really be asking 7f they come from different dis-
tributions, what are the odds that they do.

5.7 Caveats and motivation for information criteria

Gelman, et al., in their book Bayesian Data Analysis (3rd Ed, page 182), express some
concern about the approach we have taken here. I quote them, emphasis theirs,
bracketed comment mine.

This fully Bayesian approach has some appeal but we generally do noz
recommend it because, in practice, the marginal likelihood [which we
have been calling the evidence from the parameter estimation prior] is
highly sensitive to aspects of the model that are typically assigned arbi-
trarily and are untestable from data.

These arbitrary and untestable aspects are typically the priors. We try to be uninfor-
mative, but they must be proper (meaning normalized) in order to do model compar-
ison as we have done here. The Bayes factor is highly sensitive to the width of the
priors.

In my opinion, this method of model comparison is often perfectly legitimate
because the prior is part of the model and, while untestable from data, is not arbitrary.
If constructed properly, the prior represents our knowledge before data acquisition
and should therefore naturally be included in model comparison.

Whatever your position on this matter, it is still useful to have other metrics for
assessing models.

5.8 Watanabe-Akaike Information Criterion (WAIC)

A good model is a predictive model. If we were to acquire more data under identical
conditions, the parameters we derived from the posterior should be able to accurately
predict what those new data would look like. It makes sense to assess a model on
how well it can predict new data. Furthermore, the connection between predictive
capabilities and the Bayes factor is clear if you think about what must be true of a
predictive model. First, it must describe the data we have actually acquired well.
The goodness-of-fit term in the Bayes factor covers this. Second, it must describe
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new data well. If the parameters are such that it describes the data already collection
very well, but cannot predict, the model is not good. This usually happens when
the model has many parameters tailor-made for the data (such as fitting data with a
higher-order polynomial). This is captured in the Occam factor. So, models with
good Bayes factors are often predictive.

With that in mind, I will introduce a good metric for comparing models, the
Watanabe-Akaike Information Criterion, also known as the Widely Applicable
Information Criterion (WAIC). I will discuss it intuitively and not provide much
rigor. For detailed descriptions of what follows, I recommend reading chapter 7 of
Gelman, et al., Bayesian Data Analysis, 3rd Ed. and chapter 6 of McElreath, Statist:-
cal Rethinking.

In what follows, for notational convenience, I will drop explicit dependence of
M;, and also drop the subscripts from the parameter set 8;. We define the predictive
density of a single data point x € D as

single point predictive density = / do fix| 0)g(8 | D). (5.24)

This is the likelihood for observing data point x, averaged over the posterior proba-
bility distribution of parameter values . We are therefore taking into account pos-
terior information and using the likelihood to assess goodness-of-fit. We can take the
product of each of the single point predictive densities in the data set and take the
logarithm to get the log pointwise predictive density, or Ippd,

Ippd = In <H/d9 flx] 0)g(0 | D)) (5.25)

:erDln (/def(xy 0)g(0 !D))-

This gives a metric of how well the model manages to predict the observed data.
Put succinctly, the Ippd is the sum of the logarithm of the average likelihood of each
observation in a data set.

This metric is biased toward complicated models, so we add a correction. We
compute the effective number of parameters, pwaic as

PwaAIC = Z variance(Inf(x | D)), (5.26)

ieD

where the variance is computed over the posterior. Written out, this is
variance(Inf{x | D)) = /dQ g(0 | D) (Inf(x | D))*
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_ (/d9 g(0 | D) Infix | D))z. (5.27)

This parameter pwaic, can be thought of as the number of unconstrained parameters
ina model. Parameters that are influences only by the prior contribute little to pwaic,
while those that are determined mostly by the data contribute more.

The WAIC is then
WAIC = —2<lppd — pWAIC). (528)

The factor of —2 is there for historical reasons to enable comparisons to the Akaike
Information Criterion (AIC) and the Deviance Information Criterion (DIC). These
two information criteria are also widely used, but have assumptions about Gaussian-
ity, and in the case of the AIC, also flat priors. The WAIC is a better choice.

Computing the WAIC is difficult, unless, of course, you managed to get MCMC
samples! Given a set of S MCMC samples of the parameters 6 (where 8 is the
sth sample), the Ippd may be calculated as

S
Ippd =) In (EZ (x| 6W) ) (5.29)

xeD

Another beautiful example of how sampling converts integrals into sums. Similarly
we can compute pwajc from samples.

pusic = 3 o Z(logﬂxr 0Y) ~q(x)) (5:30)
xeD
where
1 S
Ez flx| O (5.31)

While you can compute the WAIC from your MCMC samples, PyMC3 has a built-in
function to do it.

For an intuitive description of the WAIC, you may think of it as an estimate of
the negative log likelihood of new data.'? That is, it is an estimate of how badly the
model would perform with new data. So, the lower the WAIC, the better the model.

12Stated precisely, the WAIC is an estimate of the out-of-sample deviance. “Out-of-sample” just
means data that is yet to come. I did not want to go through the trouble of defining deviance.
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5.9 The Akaike weights

The value of a WAIC by itself does not tell us anything. Only comparison of two or
more WAICs makes sense. Recalling that the WAIC is a measure of a log likelihood,
if we exponentiate it, we get something proportional to a probability. If we have two
models, M; and M;, the Akaike weight of model i is

exp [—1 WAIC/]
exp [—1 WAIC;] + exp [—1 WAIC;|

w; = (5.32)

This weight may be interpreted as an estimate of the probability that M; will make
the best predictions of new data.”* We can generalize this to multiple models.

exp [—3 WAIC,]

;= . 5.33
M= 5 exp [LWAIC 39
We can compute a quantity analogous to the Bayesian odds ratio,
Wi 1
— =exp |—=(WAIC; — WAIC)) | . (5.34)
W;j 2

5.10 Computing odds ratios and information criteria

You may have noticed that computing the WAIC almost always required performing
an MCMC calculation In the approximate calculation of the odds ratio, I only used
MAP information that could be found by optimization. This, however, is approxi-
mate, and has all the perils associated with posteriors that are strongly non-Gaussian.
There are information criteria that can be computed from MAP estimates as well.
These also have dangers associated with them.

So, how do you compute the odds ratio (via Bayes factor) from MCMC? We can
use a technique called parallel-tempering Markov chain Monte Carlo (PTMCMC)
to exactly compute the odds ratio. As you likely have guessed, this is computationally
intensive, but effective. We will learn about this in an auxiliary lesson.

BThis interpretation is common, but not entirely agreed upon.
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