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8 Parallel tempering MCMC

In this lecture, we will discuss parallel temperingMarkov chainMonte Carlo (PTM-
CMC). This technique allows for effective sampling of multimodal distributions and
it avoids getting trapped on local maxima of the posterior. Perhaps even more im-
portantly, it allows us to perform model selection.

8.1 The basic idea

Recall that the posterior distribution we seek to sample in the model selection prob-
lem is

g(θ i | D,Mi) ∝ g(θ i | Mi)f(D | θ i,Mi). (8.1)

Now, we define

ghot(θ i | D,Mi, β ) = 1
Zi(β ) g(θ i | Mi) [f(D | θ i,Mi)]

β (8.2)

=
1

Zi(β ) g(θ i | Mi) exp [β ln f(D | θ i,Mi)] . (8.3)

Here, β ∈ (0, 1] is an “inverse temperature” in analogy to statistical mechanics,
where the negative log likelihood,− ln f(D | θ i,Mi), is an energy. Keeping with the
analogy, the normalization constant Zi(β ), given by

Zi(β ) =
∫

dθ i g(θ i | Mi) [f(D | θ i,Mi)]
β , (8.4)

is called a partition function. We will call the distribution ghot(θ i | D,Mi, β ) a hot
posterior because it is the posterior with a high temperature.

If β is close to zero (the“high temperature” limit), we are just sampling the prior.
If β = 1, we are sampling our target posterior, the so-called “cold distribution.” So,
lowering β has the effect of flattening the posterior distribution. Therefore, walkers
at higher temperature (lower β ) are not trapped at local maxima. By occasionally
swapping walkers from adjacent temperatures, we can effectively sample a broader
swath of parameter space.

In practice, we choose a set of β ’s with β = [β 0, β 1, . . . , β m], with β i+1 < β i
and β 0 = 1. We propose a swap roughly every ns steps and accept it based on criteria
that guarantees the posterior is a stationary distribution of the transition kernel. To
do this in practice, we choose a uniform random number on [0, 1] every iteration and
propose a swap when this random number is less than 1/ns. When we do propose a
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swap, we randomly pick a temperature β j from {β 1, β 2, . . . β m}. We then compute

r = min

(
1,

ghot(θ i,j | D,Mi, β j−1)

ghot(θ i,j−1 | D,Mi, β j−1)

ghot(θ i,j−1 | D,Mi, β j)

ghot(θ i,j | D,Mi, β j)

)
. (8.5)

Here, we have defined θ i,j as the value of parameter i for a walker at temperature
β j. Note that this calculation does not require calculation of any partition functions;
the Zi(β ) cancel out in the expression for r. We then draw another uniform random
number on [0, 1] and accept the swap is that number if less than r.

This useful technique is implemented the package ptemcee (pronouced tem-see;
the p is silent). Conveniently, it automatically chooses reasonable values of β and
swapping rate, though you can specify these as well. It also has a bit more sophisti-
cation that what I have described here, using adaptive parallel tempering.

8.2 Model selection with PTMCMC

We will now do some clever ticks to see how we can use PTMCMC to do model
comparison without making the approximations we have thus far. In fact, we do not
necessarily need parallel temperingwith swapping; we only need samples of ghot(θ i |
D,Mi, β ) for various values of β . Recall the statement of Bayes’s theorem for the
model comparison problem, equation (5.3).

g(Mi | D) =
f(D | Mi) g(Mi)

f(D)
. (8.6)

The likelihood in the model selection problem is given by the evidence, a.k.a. fully
marginalized likelihood, from the parameter estimation problem, as we derived in
equation (5.5). Thus,

g(Mi | D) =
g(Mi)

f(D)

[∫
dθ i g(θ i | Mi) f(D | θ i,Mi)

]
. (8.7)

We recognize the bracketed term as Zi(1). Our goal is to calculate this quantity.

Now, we’re going to do a usual trick in statistical mechanics: we will differentiate
the log of the partition function (analogous to the derivative of a free energy).

∂

∂ β lnZi(β ) = 1
Zi(β )

∂Zi

∂ β

=
1

Zi(β )

∫
dθ i

∂

∂ β exp [ln g(θ i | Mi) + β ln f(D | θ i,Mi)]

=
1

Zi(β )

∫
dθ i ln f(D | θ i,Mi) exp [ln g(θ i | Mi) + β ln f(D | θ i,Mi)]
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=
1

Zi(β )

∫
dθ i ln f(D | θ i,Mi) g(θ i | Mi) [f(D | θ i,Mi)]

β .

(8.8)

We recognize this as the average of the log likelihood ln f(D | θ i,Mi) over the dis-
tribution ghot(θ i | D,Mi, β ). We denote this as

∂

∂ β lnZi(β ) = ⟨ln f(D | θ i,Mi)⟩ghot(θ i|D,Mi,β ) . (8.9)

Note that this average if done for each specific value of β we are considering, and
that the derivative of the log partition function is thus a function of β . Now, we can
integrate both sizes of this equation to give∫ 1

0
dβ ∂

∂ β lnZi(β ) = lnZi(1)− lnZi(0) (8.10)

=

∫ 1

0
dβ ⟨ln f(D | θ i,Mi)⟩ghot(θ i|D,Mi,β ) .

Now, if the prior is normalized, as it should be,

Zi(0) =
∫

dθ i g(θ i | Mi) = 1, (8.11)

which means lnZi(0) = 0. Thus, we get a fully marginalized likelihood of

lnZi(1) =
∫

dθ i f(D | θ i,Mi) g(θ i | Mi) (8.12)

=

∫ 1

0
dβ ⟨ln f(D | θ i,Mi)⟩ghot(θ i|D,Mi,β ) .

Fortunately, if we have done PTMCMC, we have sampled out of the distribution
ghot(θ i | D,Mi, β ) for various values of β . We can then compute the integrand in
the above equation for each β at which we sampled.

⟨ln f(D | θ i,Mi)⟩ghot(θ i|D,Mi,β ) =
1

nsamples

∑
samples

ln f(D | θ i,Mi). (8.13)

We just have to compute the log likelihood (not the hot log-likelihood) for eachMCMC
sample for a given inverse temperature β , andwe have all we need. We then perform
numerical quadrature across the values of β that we sampled to get the integral. We
therefore can compute the odds ratio of two models Mi and Mj as

Oij =
g(Mi | I)
g(Mj | I)

Zi(1)
Zj(1)

(8.14)
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=
g(Mi | I)
g(Mj | I) exp

[∫ 1
0 dβ ⟨ln f(D | θ i,Mi)⟩ghot(θ i|D,Mi,β )∫ 1
0 dβ ⟨ln f(D | θ j,Mj)⟩ghot(θ i|D,Mi,β )

]
,

where the last ratio is computed via numerical quadrature on results computed di-
rectly from our PTMCMC traces using equation (8.13). Note that we have made
no approximations at all in the model. The calculation is only approximate to the
extent that the PTMCMC sampler takes a finite number of samples and numerical
quadrature is not exact.
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