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9 Hierarchical models

In this lecture, we will investigate hierarchical models, in which some model pa-
rameters are dependent on others in specific ways. This is best learned by example.

In homework problem 5.2, we studied reversals under exposure to blue light in
C. elegans with Channelrhodopsin in two different neurons. Let’s consider one of
the strains which contains a Channelrhodopsin in the ASH sensory neuron. The
experiment was performed three times by the students of Bi 1x. In 2015, we found
that 9 out of 35 worms reversed under exposure to blue light. In 2016, 12 out of 35
reversed. In 2017, 18 out of 54 reversed.

Considering for a moment only the 2015 experiment, we can use this measure-
ment to estimate the probability p of reversal. We modeled the likelihood of reversal
with aBinomial likelihood. Taking a uniformprior onp, we derived that the posterior
probability of reversal given r our of n trials showed reversals was

g(p | r, n) =


(n + 1)!
(n − r)!r! pr(1 − p)n−r 0 ≤ p ≤ 1

0 otherwise.
(9.1)

We did the experiment again in 2016, getting r = 12 and n = 35, and in 2017
with r = 18 and n = 54. Actually, we could imagine doing the experiment over
and over again, say k times, each time getting a value of r and n. Conditions may
change from experiment to experiment. For example, wemay have different lighting
set-ups, slight differences in the strain of worms we’re using, etc. We are left with
some choices on how to model the data.

9.1 Pooled data: identical parameters

We could pool all of the data together. In other words, let’s say we measure r1 out
of n1 reversals in the first set of experiments, r2 out of n2 reversals in the second set,
etc., up to k total experiments. We could pool all of the data together to get

r =
k∑

i=1

ri

out of n =
k∑

i=1

ni reversals. (9.2)

We then compute our posterior as in equation (9.1). Here, the assumption is that the
result in each experiment are governed by identical parameters. That is to say that we
assume p1 = p2 = · · · = pk = p.
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This is similar to what we did in section 1.9, in which we looked at how a single
hypothesis (or parameter value) is informed by more data.

9.2 Independent parameters

As an alternative, we could instead say that the parameters in each experiment are
totally independent of each other. In this case, we assume that p1, p2, . . ., pk are all
independent of each other. The likelihoods and priors all multiply and the posterior
probability is

g(p | r, n) =
k∏

i=1

(ni + 1)!
(ni − ri)!ri!

pri
i (1 − pi)

ni−ri , (9.3)

where p = {p1, p2, . . . pk}, with n and r similarly defined, and the posterior is un-
derstood to be zero if any the pi’s fall out of the interval [0, 1].

When we make this assumption, we often report a value of p that is given by the
mean of the pi’s with some error bar.

9.3 Best of both worlds: a hierarchical model

Each of these extremes have their advantages. We are often trying to estimate a pa-
rameter that is more universal than our experiments, e.g., something that describes
worms with Channelrhodopsin in the ASH neuron generally. So, pooling the exper-
imentsmakes sense. On the other hand, we have reason to assume that there is going
to be a different value of p in different experiments, as biological systems are highly
variable, not to mention measurement variations. So, how can we capture both of
these effects?

We can consider amodel in which there is a “master” reversal probability, which
we will call q, and the values of pi may vary from this q according to some probability
distribution, g(pi | q). So now, we have parameters p1, p2, . . . , pk and q. So, the
posterior can be written using Bayes’s theorem,

g(q, p | r, n) = f(r,n | q, p) g(q, p)
f(n, r) . (9.4)

Note, though, that the observed values of r do not depend directly on q, only on p.
In other words, the observations are only indirectly dependent on q. So, we can write
f(r, n | q, p) = f(r,n | p). Thus, we have

g(q, p | r, n) = f(r,n | p) g(q, p)
f(n, r) . (9.5)
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Next, we can rewrite the prior using the definition of conditional probability.

g(q, p) = g(p | q) g(q). (9.6)

Substituting this back into our expression for the posterior, we have

g(q, p | r, n) = f(r,n | p) g(p | q) g(q)
f(n, r) . (9.7)

Now, if we read off the numerator of this equation, we see a chain of dependencies.
The experimental results r depend on parameters p. Parameters p depend on hyper-
parameter q. Hyperparameter q then has some hyperprior distribution. Any model
that can bewritten as a chain of dependencies like this is called ahierarchicalmodel,
and the parameters that do not directly influence the data are called hyperparame-
ters.

So, the hierarchical model captures both the experiment-to-experiment variabil-
ity, as well as the master regulator of outcomes. Note that the product g(p | q) g(q)
comprises the prior, as it is independent of the observed data.

9.4 Exchangeability

The conditional probability, g(p | q), can take any reasonable form. In the case
where we have no reason to believe that we can distinguish any one pi from another
prior to the experiment, then the label “i” applied to the experiment may be ex-
changed with the label of any other experiment. I.e., g(p1, p2, . . . , pk | q) is in-
variant to permutations of the indices. Parameters behaving this way are said to be
exchangeable. A common (simple) exchangeable distribution is

g(p | q) =
k∏

i=1

g(pi | q), (9.8)

which means that each of the parameters is an independent sample out of a distribu-
tion g(pi | q), which we often take to be the same for all i. This is reasonable to do
in the worm reversal example.

9.5 Choice of the conditional distribution

Weneed to specify our prior, which for this hierarchical modelmeans that we have to
specify the conditional distribution, g(pi | q), as well as g(q) For the latter, we will
take it to be uniform on [0, 1]. This is equivalent to taking it to be a Beta distribution
with α = β = 1. The Beta distribution is a good choice in this case, as it is a
probability distribution of probabilities. For the conditional distribution g(pi | q),
we also assume it is Beta-distributed.
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The Beta distribution is typically written as

g(p | α , β ) = Γ (α + β )
Γ (α )Γ (β ) pα−1(1 − p)β−1, (9.9)

where it is parametrized by positive constants α and β . The Beta distribution has
mean and concentration, respectively, of

q =
α

α + β , (9.10)

κ = α + β . (9.11)

The concentration κ is a measure of how sharp the distribution is. The bigger κ is,
the most sharply peaked the distribution is.

Because the Beta distribution has two parameters, we cannot just parametrize
the model with q. We would have to use q and κ or alternatively α and β . So, our
expression for the posterior is

g(α , β , p | r,n) =
f(r, n | p) g(α , β )

∏k
i=1 g(pi | α , β )

f(n, r) . (9.12)

Alternatively, we could parametrize the model in terms of q and κ , giving

g(q, κ , p | r,n) =
f(r, n | p) g(q, κ )

∏k
i=1 g(pi | q, κ )

f(n, r) . (9.13)

Note that if we do choose to parametrize ourmodel with q and κ , we can convert
back to α and β using

α = qκ (9.14)

β = (1 − q)κ . (9.15)

9.6 Choice of prior

As already stated, the likelihood is Binomial, with

f(r,n | p) =
k∏

i=1

f(ri, ni | pi) =
k∏

i=1

ni!

ri!(ni − ri)!
pri

i (1 − pi)
ni−ri , (9.16)

and g(pi | α , β ) is Beta distributed, with

g(pi | α , β ) = Γ (α + β )
Γ (α )Γ (β ) pα−1

i (1 − pi)
β−1. (9.17)
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We are now left to specify the hyperprior, g(α , β ). We might choose to specify the
prior in terms of q and κ , since these seem at face to bemore intuitive. We can take a
Uniformprior forq and a Jeffreys prior for κ , aswe often do. That is, g(q, κ ) ∝ 1/κ .
Applying the change of variables formula, we have

g(α , β ) ∝

∣∣∣∣∣
∂q
∂ α

∂q
∂ β

∂ κ
∂ α

∂ κ
∂ β

∣∣∣∣∣ 1
α + β =

∣∣∣∣∣
β

(α+β )2 − α
(α+β )2

1 1

∣∣∣∣∣ 1
α + β =

1
(α + β )2 .

(9.18)

So, a uniform prior for q and a Jeffreys prior for κ results in a uniform prior in α and
β , defined on α , β ∈ (0, inf). If we use this Uniform prior, we have

g(α , β , p | r,n) ∝ 1
(α + β )2

k∏
i=1

Γ (α + β )
Γ (α )Γ (β ) pα−1

i (1 − pi)
β−1 pri

i (1 − pi)
ni−ri

∝ 1
(α + β )2

k∏
i=1

Γ (α + β )
Γ (α )Γ (β ) pri+α−1

i (1 − pi)
ni−ri+β−1.

(9.19)

We can integrate the right hand side over p1, p2, . . . to get the marginalized poste-
rior for the hyperparameters α and β . We can do the integral by inspection, noting
that pri+α−1

i (1 − pi)
ni−ri+β−1 is the same functional form of an unnormalized Beta

distribution, so we must have∫ 1

0
dpi pri+α−1

i (1 − pi)
ni−ri+β−1 =

Γ (ri + α )Γ (ni − ri + β )
Γ (ni + α + β ) . (9.20)

So, the unnormalized marginalized posterior is

g(α , β | r, n) ∝ 1
(α + β )2

k∏
i=1

Γ (α + β )
Γ (α )Γ (β )

Γ (ri + α )Γ (ni − ri + β )
Γ (ni + α + β ) .

(9.21)

There is a problem with this posterior: it is improper. That is to say that it is unnor-
malizable. This can be seen by using the reciprocal relation for gamma functions,
xΓ (x) = Γ (x + 1) to re-write the marginalized posterior.

g(α , β | r, n) ∝ 1
(α + β )2

k∏
i=1

(∏ri−1
m=0(α + m)

)(∏ni−ri−1
m=0 (β + m)

)
∏n−1

m=0(α + β + m)

=
1

(α + β )2

k∏
i=1

O(α ri)O(β ni−ri)

O ((α + β )ni)
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=
1

(α + β )2

k∏
i=1

O
((

α
α + β

)ri)
O

((
β

α + β

)ni−ri
)
.

(9.22)

Since we have q = α/(α + β ) = (1+ β/α )−1 and must lie between zero and one,
we can consider a limit of large α and β with the ratio α/β fixed at some constant,
finite value. Then, for large α and β , the product term in the expression for the
unnormalized marginal posterior is constant. Therefore, the integral∫ ∞

0
dα
∫ ∞

0
dβ g(α , β | r, n) (9.23)

diverges because the integral over (α + β )−2 diverges. This gives an improper pos-
terior, which is not acceptable.

It turns out that this problem occurs generally in hierarchical models. The vari-
ance of a Beta distribution is approximately proportional to κ−1, especially at large
α and β . By choosing a Jeffreys prior for the variance, we are choosing a Uniform
prior for the log of the variance. When we do this with hierarchical models, that is
choose a Uniform prior for the log of the variance of a hyperprior for exchangeable
parameters, we get an improper posterior.

So, it is often tricky to be truly uninformative with your hyperpriors. For the
present example, we will instead choose a Uniform prior in the standard deviation,
so that κ−1/2 has a Uniform prior; g(q, κ−1/2) = constant. If we do this, we have

g(α , β ) ∝

∣∣∣∣∣
∂q
∂ α

∂q
∂ β

∂
√

κ
∂ α

∂
√

κ
∂ β

∣∣∣∣∣ =
∣∣∣∣∣

β
(α+β )2 − α

(α+β )2

− 1
2(α+β )3/2 − 1

2(α+β )3/2

∣∣∣∣∣ ∝ 1
(α + β )5/2 . (9.24)

With this prior, we have an unnormalized posterior of

g(α , β , p | r,n) ∝ 1
(α + β )5/2

k∏
i=1

Γ (α + β )
Γ (α )Γ (β ) pri+α−1

i (1 − pi)
ni−ri+β−1.

(9.25)

This is a proper posterior, which you can prove with similar arguments as we made
to show that the first posterior we considered was improper.

9.7 Implementation

In some cases, we can do some gnarly integration and work out analytical results for
the posterior of a hierarchical model. This usually involves choosing conjugate pri-
ors. Most often, though, we need to resort to numerical methods, MCMC as usual
being the most powerful. To see the worm reversal problem solved with a hierarchi-
cal model, see the implementation here.
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9.8 Generalization

Theworm reversal problem is easily generalized. You can imagine havingmore levels
of the hierarchy. This is justmore steps in the chain of dependencies that are factored
in the prior. For general parameters θ and hyperparameters ϕ , we have

g(θ , ϕ | D) =
f(D | θ ) g(θ | ϕ )P(ϕ )

f(D)
(9.26)

for a two-level hierarchical model. For a three-level hierarchical model, we can con-
sider hyperparameters ξ that depend on ϕ , giving

g(θ , ϕ , ξ | D) =
f(D | θ ) g(θ | ϕ ) g(ϕ | ξ ) g(ξ )

f(D)
, (9.27)

and so on for four, five, etc., level hierarchical models. Aswe have seen in the course,
the work is all in coming up with the models for the likelihood f(D | θ ), and prior,
g(θ | ϕ ) g(ϕ ), in this case for a two-level hierarchical model. For coming up with
the conditional portion of the prior, g(θ | ϕ ), we often assume a Gaussian distri-
bution because this often describes experiment-to-experiment variability. (The Beta
distribution we used in our example is approximately Gaussian and has the conve-
nient feature that it is defined on the interval [0, 1].) Bayes’s theorem gives you the
posterior, and it is then “just” a matter of computing it by sampling from it.
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