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Bayes’s theorem for parameter estimation:

g(θ|D, M) = 
f(D|θ, M)  g(θ|M)

f(D|M)
posterior = 

likelihood · prior
evidence

=

Statistical inference requires a probability theory



Gunawardena, MBoC, 25, 3441, 2014

Model a:

Model b:

Cartoon models shape our thinking



Good, et al., Science, 342, 856, 2013

Model a:

Model b:

Mathematical models identify parameters

l

d

l ≠ l(d)

l = ls

γd
l(d;γ,φ) = 

(1+(d/φ)3)1/3



Statistical models are generative

Model a:

Model b:

l

d

li|ls, σ ~ Norm(ls, σ) ∀ i

γd
l(d;γ,φ) = 

(1+(d/φ)3)1/3

li, di|γ, φ, σ ~ Norm(l(d;γ,φ), σ) ∀ i



Statistical models need a prior

Model a:

Model b:

l

d

ls ~ Uniform(0, 1 mm)

σ  ~ Jeffreys

γ  ~ Uniform(0, 1)

σ  ~ Jeffreys

φ ~ Uniform(0, 1 mm)

li, di|γ, φ, σ ~ Norm(l(d;γ,φ), σ) ∀ i

li|ls, σ ~ Norm(ls, σ) ∀ i





Given the statistical model and the data, 
the posterior is completely determined.

All of the “work” of inference is computing it!



For the purposes of this demonstration of parameter estimation, we assume the
Gaussian distribution is a good choice for our likelihood for repeated measurements.
We have to decide how the measurements are related to specify how many entries
in the covariance matrix we need to specify as parameters. It is often the case that
the measurements i.i.d, so that only a single mean and variance are specified. So, we
choose our likelihood to be

f (x | —;ff) =
„

1

2ıff2

« n
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exp
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− 1

2ff2
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i=1

(xi − —)2
)

: (2.9)

By choosing this as our likelihood, we are saying that we expect our measurements
to have a well-defined mean — with a spread described by the variance, ff2.

But wait a minute; we now have another parameter, ff, beyond the one we’re
trying tomeasure. So, our statisticalmodel has two parameters, and Bayes’s theorem
now reads

g(—;ff | x) = f (x | —;ff) g(—;ff)
f (x)

: (2.10)

Afterwe compute the posterior, we can still find the posterior probability distribution
we are after by marginalizing.

g(— | x) =
Z ∞

0
dff g(—;ff | x): (2.11)

Because the evidence f (x) is entirely determined by the likelihood, prior, and nor-
malization condition of the posterior, we need only to specify the likelihood and prior
to get the posterior. We have chosen a Gaussian distribution for our likelihood, so
now we need to specify g(—;ff). The prior encodes what we know about the param-
eters before the experiments. The prior may be informed by previous experiments,
as we discussed in section 1.9. We will talk in depth in the next lecture about choices
of priors. For the present, we will assume that — and ff are independent such that

g(—;ff) = g(—) g(ff): (2.12)

Further, we will assume a Uniform prior for — and a Jeffreys prior for ff. Specifi-
cally,

g(—) =

8
><

>:

(—max − —min)
−1 —min < — < —max;

0 otherwise;
(2.13)
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and

g(ff | I) =

8
><

>:

(ln(ffmax=ffmin)ff)
−1 ffmin < ff < ffmax

0 otherwise:
(2.14)

For g(—), all values between —min and —max are equally likely. We have put bounds on
the values that— can take, and we will work in the limit where these bounds are far from
any peak in the likelihood in what follows. Similarly, for g(ff), all values of the logarithm
of ff are equally likely (as we will derive in the next lecture), and it, too, has bounds.

Now that we have specified the likelihood and prior, we have the posterior.

g(—;ff | x) = c

ffn+1
exp

"

− 1

2ff2

nX

i=1

(xi − —)2
#

; (2.15)

where we have absorbed all constants in to the normalization constant c6.

So, we are done! We have now updated our knowledge of — and ff. We could just
plot the posterior distribution. We could show it as a contour plot in the —-ff plane, for
instance.

But, it would be nice to get the posterior into a bit of a cleaner form. We can show,
after some algebraic grunge, that

nX

i=1

(xi − —)2 = n(x̄ − —)2 + nr 2; (2.16)

where

r 2 =
1

n

nX

i=1

(xi − x̄)2 (2.17)

is the sample variance and

x̄ =
1

n

nX
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is the sample mean. Thus, we have

g(—;ff | x) = c e−nr2=2ff2

ffn+1
exp
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−n(—− x̄)2

2ff2

#

: (2.19)

6We do this here for convenience, but when we do model selection later on, we will have to compute
the evidence, so we should be careful about the normalization constants of the priors throughout our
calculations.
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We can sometimes express 
the posterior analytically

Repeated measurements



We can sometimes express 
the posterior analytically

Repeated measurements

In this form, we immediately see that, regardless the value of ff, themost probable value
of — is x̄ . This is perhaps not surprising that the most probable value of — is the sample
mean, but it is pleasing how nicely it falls out of the analysis.

Now, it would really like to get a summary of the posterior to be able to report some
nice numbers, like the most probable value of —, x̄ , instead of a plot.

—

We wanted to get g(— | x) in the first place. As we said before, we can get that by
marginalizing over ff.

g(— | x) =
Z ∞

0
dff g(—;ff | x) (2.20)

= c
Z ∞

0

dff
ffn+1

exp

"

−n(—− x̄)2 + nr 2

2ff2

#

:

This integral is a little gnarly, but we can evaluate it. We end up getting

g(— | x) ∝
 

1 +
(—− x̄)2

r 2
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2
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2

: (2.21)

I have written the expression in two equivalent forms because it is sometimes more con-
venient to use one or the other. They are proportional, which you can verify for yourself.
For now, we’ll use the first expression, since it is convenient for computing themarginal-
ized posteriors. We can integrate this to get the normalization constant, giving

g(— | x) =
Γ
“
n
2

”

√
ıΓ

“
n−1
2

”
1

r

 

1 +
(—− x̄)2

r 2

!− n
2

: (2.22)

The normalization contains gamma functions. This distribution has a name. It is the
Student-t distribution, albeit with a nonstandard parametrization. As we now know, it
describes the mean of a Gaussian distribution with unknown variance from which the
data were drawn. As written, the Student-t distribution above is said to have n − 1
degrees of freedom.

As we have already determined, the most probable value of — is x̄ . We would like
to describe an error bar7 for this parameter —. Since we know its posterior, the error
bar is just some summary of the posterior distribution. We could report the error bar
to contain the set of values of —, centered on x̄ , that contain a given percentage of the
probability.

The common practice for getting the error bar is to approximate the posterior distri-
bution as Gaussian and report intervals based on the standard deviation of the Gaussian

7I’m using the term “error bar” loosely here. We will sharpen this definition later in the course.
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approximation. To get a Gaussian approximation, we expand the logarithm of posterior
probability distribution function in a Taylor series about its maximum.

ln g(— | x) = constant− n

2
ln

 

1 +
(—− x̄)2

r 2

!

(2.23)

≈ constant− n(—− x̄)2

2r 2
: (2.24)

Exponentiating and evaluating the normalization constant yields

g(— | x) ≈ 1
q
2ır 2=n

exp

"

−(—− x̄)2

2r 2=n

#

; (2.25)

a Gaussian distribution with mean x̄ and variance r 2=n. Recall that r 2 is the sample
variance, so the variance of the Gaussian approximation of the posterior distribution is
the sample variance divided by n. The quantity r=

√
n is referred to as the standard error

of the mean, which is often how error bars are reported. We now know that it describes
the width of the (Gaussian approximation of the) posterior distribution describing the
parameter value we sought to measure.

ff2

Often overlooked is an estimate for the variance. Remember, when we took measure-
ments, we did not assume we knew the variance of the measurements. We would also
like an estimate of it.

We take a similar approach. We marginalize the full posterior over —.

g(ff | x) =
Z ∞

−∞
d—g(—;ff | x): (2.26)

The integral is again doable, but also again a bit gnarly. The result is

g(ff | x) = c

ffn
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"

−nr 2

2ff2

#

: (2.27)

We can compute the normalization constant, which involves a little messy integration,
giving

g(ff | x) = (nr 2)
(n−1)=2

2(n−3)=2Γ
“
n−1
2

”
ffn

exp
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−nr 2

2ff2

#

: (2.28)

We can find the most probable ff (note that the normalization constant is not necessary
for this calculation). This is found by finding the value of ff for which the derivative of
the log posterior is zero.

d
dff

ln g(ff | x) = d
dff

 

−n lnff − nr 2

2ff2
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+
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ff3
: (2.29)
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Obvious assumption: posterior is approximately Gaussian.

1. Find the most probable parameters θ* (the MAP).

2. Approximate the posterior g(θ*|D) as Gaussian by 
     doing a Taylor expansion of ln g(θ*|D) about θ*.

3. The covariance matrix is the negative inverse 
     of the Hessian of ln g(θ*|D).

The posterior may sometimes 
be approximated as Gaussian



γ  = 0.86 ± 0.02 
φ = 44.4 ± 1.3 µm

The posterior may sometimes 
be approximated as Gaussian



The posterior may be 
sampled using MCMC

1. Define the (log) posterior distribution

2. Efficiently sample the posterior with an ergodic,  
     positively recurrent Markov chain

3. Obtain marginalized posterior by considering 
     specific parameters.





Frequentist approaches can be 
useful and easily implemented





Your computer can see!





Colocalization can and should be quantified
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Data source

Data validation

Exploratory data analysis

Parameter estimation

Model comparison

raw data

validated data

visualization, 
intuition

posterior and 
its summaries

odds ratios 
info. criteria

Publication

Data wrangling

clean, tidy data



Reproducible research requirements

All processing is automated with open code.

Data sets are complete, organized, and accessible.

Protocols are complete, organized, and accessible.
Note instruments, firmware versions, all operating parameters 

Use standardized tools, include intermediate results, store sensibly 

Use open source tools, use version control, make your code public



Thank you



Thank you to the data sources

• Avni Gandhi, Audrey Chen, Grigorios Oikonomou, and 

David Prober 

• Greg Reeves, Nathanie Trisnadi, and Angela 

Stathopoulos 
• Ravi Nath, Claire Bedbrook, Mike Abrams, and Lea 

Goentoro 

• Jin Park and Michael Elowitz 

• Zak Singer and Michael Elowitz 

• Alex Webster and Alexei Aravin 
• Dawna Bagherian, Kyu Lee, and Markus Meister 

• Griffin Chure, Manuel Razo, and Rob Phillips 

• Meaghan Sullivan, Kevin Yu, Jimmy Hamilton, and the 

students of Bi 1x 

• Han Wang and Paul Sternberg 
• Emily Blythe and Ray Deshaies 

• Lior Pachter and contributors to SNPedia 

Extramural
• Melissa Gardner (U Minnesota), Marija Zanic 

(Vanderbilt), and Joe Howard (Yale) 

• Matt Good and Dan Fletcher (UC-Berkeley) 

• Nate Goehring (Crick) and Stephan Grill (BIOTEC-
Dresden) 

• Charlie Wright, Srividya Iyer-Biswas, and Norbert Scherer 

(U Chicago) 

• Peter and Rosemary Grant (Princeton) 

• Thomas Kelinteich and Stanislav Gorb (Kiel) 
• Lars Straub and Geoffrey Williams (U Bern) 

• Alan Perelson (Santa Fe Institute) 

• Yanping Chen and the UCR Time Series Classification 

Archive



Thank you

237 contributors to scikit-image

268 contributors to Bokeh

938 contributors to Pandas

582 contributors to Numpy

141 contributors to PyMC329 contributors to HoloViews

303 contributors to Jupyter notebook

325 contributors to Theano

Contributors to the rest of the SciPy stack

973 contributors to scikit-learn 41 contributors to emcee/ptemcee



Thank you

Heidi Klumpe

James McGehee

Porfirio Quintero-Cadena

Christina Su

Junedh Amrute



Thank you

All of you!



Go forth and…

Evangelize workflows for reproducible science.

Use what you have learned to do 
reproducible quantitative research.


