BE/Bi 103
 Data Analysis in the Biological Sciences

Fall term, 2017

The scientific method

Statistical inference requires a probability theory

Bayes's theorem for parameter estimation:

$$
\text { posterior }=g(\theta \mid D, M)=\frac{f(D \mid \theta, M) g(\theta \mid M)}{f(D \mid M)}=\frac{\text { likelihood } \cdot \text { prior }}{\text { evidence }}
$$

Cartoon models shape our thinking

Mathematical models identify parameters

Statistical models are generative

$I_{i} \mid I_{s}, \sigma \sim \operatorname{Norm}\left(I_{s}, \sigma\right) \forall i$

Statistical models need a prior

$$
\begin{aligned}
I_{s} & \sim \operatorname{Uniform}(0,1 \mathrm{~mm}) \\
\sigma & \sim \operatorname{Jeffreys} \\
I_{i} \mid I_{s}, & \sigma \operatorname{Norm}\left(I_{s}, \sigma\right) \forall i
\end{aligned}
$$

Allen Downey＠AllenDowney • Nov 17

If I tell you my likelihoods are based on a truckload of subjective modeling decisions，nobody panics．But when I say that my prior is based on one little assumption，everyone loses their minds！

Data Science Fact＠DataSciFact

＂By the time we＇ve reached thinking about priors，we are already two or three levels of ad hociness down the hole．What＇s a little more？＂－Matt Briggs

Given the statistical model and the data, the posterior is completely determined.

All of the "work" of inference is computing it!

We can sometimes express
 the posterior analytically

Repeated measurements

$$
\begin{aligned}
& f(\mathbf{x} \mid \mu, \sigma)=\left(\frac{1}{2 \pi \sigma^{2}}\right)^{\frac{n}{2}} \exp \left\{-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2}\right\} \\
& g(\mu)=\left\{\begin{array}{cl}
\left(\mu_{\max }-\mu_{\min }\right)^{-1} & \mu_{\min }<\mu<\mu_{\max }, \\
0 & \text { otherwise, }
\end{array}\right. \\
& g(\sigma \mid I)=\left\{\begin{array}{cc}
\left(\ln \left(\sigma_{\max } / \sigma_{\min }\right) \sigma\right)^{-1} & \sigma_{\min }<\sigma<\sigma_{\max } \\
0 & \text { otherwise. }
\end{array}\right.
\end{aligned}
$$

We can sometimes express
 the posterior analytically

Repeated measurements

$$
\begin{aligned}
\bar{x} & =\frac{1}{n} \sum_{i=1}^{n} x_{i} \\
r^{2} & =\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2} \\
g(\mu \mid \mathbf{x}) & =\frac{\Gamma\left(\frac{n}{2}\right)}{\sqrt{\pi} \Gamma\left(\frac{n-1}{2}\right)} \frac{1}{r}\left(1+\frac{(\mu-\bar{x})^{2}}{r^{2}}\right)^{-\frac{n}{2}} \\
g(\sigma \mid \mathbf{x}) & =\frac{\left(n r^{2}\right)^{(n-1) / 2}}{2^{(n-3) / 2} \Gamma\left(\frac{n-1}{2}\right) \sigma^{n}} \exp \left[-\frac{n r^{2}}{2 \sigma^{2}}\right]
\end{aligned}
$$

The posterior may sometimes be approximated as Gaussian

1. Find the most probable parameters θ^{*} (the MAP).
2. Approximate the posterior $g\left(\theta^{*} \mid D\right)$ as Gaussian by doing a Taylor expansion of $\ln g\left(\theta^{\star} \mid D\right)$ about θ^{\star}.
3. The covariance matrix is the negative inverse of the Hessian of $\ln g\left(\theta^{*} \mid D\right)$.

The posterior may sometimes be approximated as Gaussian

The posterior may be sampled using MCMC

1. Define the (log) posterior distribution
2. Efficiently sample the posterior with an ergodic, positively recurrent Markov chain
3. Obtain marginalized posterior by considering specific parameters.

Frequentist approaches can be useful and easily implemented

DID THE SUN JUST EXPLODE?
 (TTS NGHT, SO WERE NOT SURE.)

FREQUENTIST STATISTCIAN:

Your computer can see!

Colocalization can and should be quantified

The scientific method

Dała source

Reproducible research requirements

Protocols are complete, organized, and accessible.
Note instruments, firmware versions, all operating parameters

Data sets are complete, organized, and accessible.
Use standardized tools, include intermediate results, store sensibly

All processing is automated with open code.
Use open source tools, use version control, make your code public

Thank you

Thank you to the data sources

Caltech

- Avni Gandhi, Audrey Chen, Grigorios Oikonomou, and David Prober
- Greg Reeves, Nathanie Trisnadi, and Angela Stathopoulos
- Ravi Nath, Claire Bedbrook, Mike Abrams, and Lea

Goentoro

- Jin Park and Michael Elowitz
- Zak Singer and Michael Elowitz
- Alex Webster and Alexei Aravin
- Dawna Bagherian, Kyu Lee, and Markus Meister
- Griffin Chure, Manuel Razo, and Rob Phillips
- Meaghan Sullivan, Kevin Yu, Jimmy Hamilton, and the students of Bi 1 x
- Han Wang and Paul Sternberg
- Emily Blythe and Ray Deshaies
- Lior Pachter and contributors to SNPedia

Extramural

- Melissa Gardner (U Minnesota), Marija Zanic (Vanderbilt), and Joe Howard (Yale)
- Matt Good and Dan Fletcher (UC-Berkeley)
- Nate Goehring (Crick) and Stephan Grill (BIOTECDresden)
- Charlie Wright, Srividya lyer-Biswas, and Norbert Scherer (U Chicago)
- Peter and Rosemary Grant (Princeton)
- Thomas Kelinteich and Stanislav Gorb (Kiel)
- Lars Straub and Geoffrey Williams (U Bern)
- Alan Perelson (Santa Fe Institute)
- Yanping Chen and the UCR Time Series Classification Archive

Thank you

303 contributors to Jupyter notebook

268 contributors to Bokeh

29 contributors to HoloViews

237 contributors to scikit-image

973 contributors to scikit-learn

938 contributors to Pandas

582 contributors to Numpy

141 contributors to PyMC3

325 contributors to Theano

41 contributors to emcee/ptemcee

Contributors to the rest of the SciPy stack

Thank you

Junedh Amrute
Heidi Klumpe
James McGehee
Porfirio Quintero-Cadena

Christina Su

Thank you

All of you!

Go forth and...

Use what you have learned to do reproducible quantitative research.

Evangelize workflows for reproducible science.

