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1 Bayes’s theorem and the logic of science

We start with a question. What is the goal of doing (biological) experiments?
There are many answers you may have for this. Some examples:

• To further knowledge.

• To test a hypothesis.

• To explore and observe.

• To demonstrate. E.g., to demonstrate feasibility.

More obnoxious answers are

• To graduate.

• Because your PI said so.

• To get data.

This question might be better addressed if we zoom out a bit and think about
the scientific process as a whole. In Fig. 1, we have a sketch of the scientific pro-
cesses. This cycle repeats itself as we explore nature and learn more. In the boxes
are milestones, and along the arrows in orange text are the tasks that get us to these
milestones.
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Figure 1: A sketch of the scientific process. Adapted fromFig. 1.1 of P. Gregory,
Bayesian Logical Data Analysis for the Physical Sciences, Cambridge, 2005.

Let’s consider the tasks and their milestones. We start in the lower left.
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• Hypothesis invention/refinement. In this stage of the scientific process, the re-
searcher(s) think about nature, all that they have learned, including from their
experiments, and formulate hypotheses or theories they can pursue with ex-
periments. This step requires innovation, and sometimes genius (e.g., general
relativity).

• Deductive inference. Given the hypothesis, the researchers deduce what must
be true if the hypothesis is true. You have done a lot of this in your study to this
point, e.g., given X and Y, derive Z. Logically, this requires a series of strong
syllogisms:

If A is true, then B is true.
A is true.
Therefore B is true.

The result of deductive inference is a set of (preferably quantitative) predic-
tions that can be tested experimentally.

• Do experiment. This requireswork, and also its own kind of innovation. Specif-
ically, you need to think carefully about how to construct your experiment to
test the hypothesis. It also usually requires money. The result of doing exper-
iments is data.

• Statistical (plausible) inference. This step is perhaps the least familiar to you,
but this is the step that this course is all about. I will talk about what statistical
inference is next; it’s too involved for this bullet point. But the result of statis-
tical inference is knowledge about how plausible a hypothesis and estimates of
parameters under that hypothesis are.

1.1 What is statistical inference?

As we designed our experiment under our hypothesis, we used deductive logic to
say, “If A is true, then B is true,” where A is our hypothesis and B is an experimental
observation. This was deductive inference.

Now, let’s say we observe B. Does this make A true? Not necessarily. But it does
make A more plausible. This is called a weak syllogism. As an example, consider the
following hypothesis/observation pair.

A = Wastewater injection after hydraulic fracturing, known as fracking,
can lead to greater occurrence of earthquakes.

B = The frequency of earthquakes in Oklahoma has increased 100 fold
since 2010, when fracking became common practice there.

Because B was observed, A is more plausible.
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Statistical inference is the business of quantifying how much more plausible A is
after obesrving B. In order to do statistical inference, we need a way to quantify
plausibility. Probability serves this role.

So, statistical inference requires a probability theory. Thus, probability the-
ory is a generalization of logic. Due to this logical connection and its crucial role in
science, E. T. Jaynes says that probability is the “logic of science.”

1.2 The problem of probability

We know what we need, a theory called probability to quantify plausibility. We
will not formally define probability here, but use our common sense reasoning of
it. Nonetheless, it is important to understand that there are two dominant interpre-
tations of probability.

Frequentist probability. In the frequentist interpretation of probability, the prob-
ability P(A) represents a long-run frequency over a large number of identical repeti-
tions of an experiment. These repetitions can be, and often are, hypothetical. The
event A is restricted to propositions about random variables, a quantity that can very
meaningfully from experiment to experiment.1

Bayesian probability. Here, P(A) is interpreted to directly represent the degree
of belief, or plausibility, about A. So, A can be any logical proposition.

Youmayhaveheard about a split, or even afight, betweenpeoplewhouseBayesian
and frequentist interpretations of probability applied to statistical inference. There
is no need for a fight. The twoways of approaching statistical inference differ in their
interpretation of probability, the tool we use to quantify plausibility. Both are valid.

Inmyopinion, theBayesian interpretation of probability ismore intuitive to apply
to scientific inference. It always starts with a simple probabilistic expression and
proceeds to quantify plausibility. It is conceptually cleaner to me, since we can talk
about plausibility of anything, including parameter values. In other words, Bayesian
probability serves to quantify our own knowledge, or degree of certainty, about a
hypothesis or parameter value. Conversely, in frequentist statistical inference, the
parameter values are fixed, and we can only study how repeated experiments will
convert the real parameter value to an observed real number.

We will use some frequentist approaches in class, especially when we study non-
parametric methods, but we will generally focus on Bayesian analysis. For now, we
will focus on some key properties of probability.

1More formally, a random variable transforms the possible outcomes of an experiment to real
numbers.
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1.3 Desiderata for Bayesian probability

In 1946, R. Cox laid out a pair of rules based on some desired properties of probability
as a quantifier of plausibility. These ideas were expanded on by E. T. Jaynes in the
1970s. The desiderata are

I. Probability is represented by real numbers.

II. Probabilitymust agree with rationality. Asmore information is supplied, prob-
abilitymust rise in a continuous,monotonicmanner. The deductive limitmust
be obtained where appropriate.

III. Probability must be consistent.

a) Structure consistency: If a result is reasoned in more than one way, we
should get the same result.

b) Propriety: All relevant information must be considered.
c) Jaynes consistency: Equivalent states of knowledge must be represented

by equivalent probability.

Based on these desiderata, we can work out important results that a probability
function must satisfy. I pause to note that one can generally define probability with-
out a specific interpretation in mind, and it is valid for both Bayesian and frequentist
interpretations. See, for example, section 1.6 of Blitzstein and Hwang, Introduction
to Probability, CRC Press, 2015.

Two results of these desiderata (worked out in chapter 2 of Gregory’s book) are
the sum rule and the product rule. They apply to both frequentist and Bayesian inter-
pretations.

1.4 The sum rule, the product rule, and conditional probability

The sum rule says that the probability of all events must add to unity. Let Ā be all
events except A. Then, the sum rule states that

P(A) + P(Ā) = 1. (1.1)

Now, let’s say that we are interested in eventA happening given that eventB hap-
pened. So, A is conditional on B. We denote this conditional probability as P(A | B).
Given this notion of conditional probability, we can write the sum rule as

(sum rule) P(A | B) + P(Ā | B) = 1, (1.2)

for any B.
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The product rule states that

P(A,B) = P(A | B)P(B), (1.3)

where P(A,B) is the probability of both A and B happening. The product rule is also
referred to as the definition of conditional probability. It can similarly be expanded
as we did with the sum rule.

(product rule) P(A,B | C) = P(A | B,C)P(B | C), (1.4)

for any C.

1.5 Application to scientific measurement

This is all a bit abstract. Let’s bring it into the realm of scientific experiment. We’ll
assign meanings to these things we have been calling A, B, and C.

A = hypothesis (or parameter value), Hi, (1.5)

B = Measured data set, D, (1.6)

C = All other information we know, I. (1.7)

Now, let’s rewrite the product rule.

P(Hi,D | I) = P(Hi | D, I)P(D | I). (1.8)

Ahoy! The quantity P(Hi | D, I) is exactly what we want from our statistical infer-
ence. This is the probability that a hypothesis is true, or a probability density function
(or probability mass function in the discrete case) for the values of a parameter, given
measured data and everything we’ve learned. Now, how do we compute it?

1.6 Bayes’s Theorem

Note that because “and” is commutative, P(Hi,D | I) = P(D,Hi | I). So, we apply
the product rule to both sides of the seemingly trivial equality.

P(Hi | D, I)P(D | I) = P(Hi,D | I) = P(D,Hi | I) = P(D | Hi, I)P(Hi | I).
(1.9)

If we take the terms at the beginning and end of this equality and rearrange, we get

(Bayes’s theorem) P(Hi | D, I) = P(D | Hi, I)P(Hi | I)
P(D | I) . (1.10)
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This result is called Bayes’s theorem. This is far more instructive in terms of how
to compute our goal, which is the left hand side.2 The quantities on the right hand
side all have meaning. We will talk about the meaning of each term in turn, and this
is easier to do using their names; each item in Bayes’s theorem has a name.

posterior =
likelihood× prior

evidence
. (1.11)

The prior probability. First, consider the prior, P(Hi | I). As probability is a
measure of plausibility, or how believable a hypothesis is, we should be able to write
this down based on I.3 This represents the plausibility about hypothesis Hi given
everything we know before we did the experiment to get the data.

The likelihood. The likelihood, P(D | Hi, I), describes how likely it is to acquire
the observed data, given that the hypothesis Hi is true. It also contains information
about what we expect from the data, given our measurement method. Is there noise
in the instruments we are using? How do we model that noise? These are contained
in the likelihood.

The evidence. I will not talk much about this here, except to say that it can be
computed from the likelihood and prior, and is also called the marginal likelihood, a
name whose meaning will become clear in the next section.4

The posterior probability. This is what we are after. How plausible is the hypoth-
esis, given that we have measured some new data? It is calculated directly from the
likelihood and prior (since the evidence is also computed from them). Computing
the posterior distribution constitutes the bulk of our inference tasks in this course.

2Do not be confused. Bayes’s Theorem is a statement about probability and holds whether you
interpret probability in a Bayesian or frequentist manner. The name “Bayesian” does not mean that
it applies only to probability interpreted through the Bayesian lens.

3I say this flippantly. In fact, specifying prior probabilities is one of the most studied and most
controversial aspects of Bayesian statistics.

4I have heard this referred to as the “fullymarginalized likelihood” because of the cute correspon-
dence of the acronym and how some people feel trying to get their head around the meaning of the
quantity.
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1.7 Marginalization

A moment ago, I mentioned that the evidence can be computed from the likelihood
and the prior. To see this, we apply the sum rule to the posterior probability.

1 = P(Hj | D, I) + P(H̄j|D, I)

= P(Hj | D, I) +
∑
i̸=j

P(Hi | D, I)

=
∑

i

P(Hi | D, I), (1.12)

for some hypothesis Hj. Now, Bayes’s theorem gives us an expression for P(Hi |
D, I), so we can compute the sum.∑

i

P(Hi | D, I) =
∑

i

P(D | Hi, I)P(Hi | I)
P(D | I)

=
1

P(D | I)
∑

i

P(D | Hi, I)P(Hi | I)

= 1. (1.13)

Therefore, we can compute the evidence by summing over the priors and likelihoods
of all possible hypotheses.

P(D | I) =
∑

i

P(D | Hi, I)P(Hi | I). (1.14)

This process of eliminating a variable (in this case the hypotheses) from a probability
by summing is called marginalization.

Note that if the space of hypotheses is continuous, for example if the “hypothe-
sis” is a parameter value which we’ll call θ , we can replace the summation with an
integral.5

P(D | I) =
∫

dθ P(D | θ , I)P(θ | I). (1.15)

1.8 A note on the word “model”

Youmay have noticed the terms“cartoonmodel,” “mathematicalmodel,” and“sta-
tistical model” in Fig. 1. Being biologists who are doing data analysis, the word

5There are some mathematical subtleties. These are discussed at length in Jaynes’s book, Proba-
bility Theory: the logic of science.
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“model” is used to mean three different things in our work. So, for the purposes
of this course, we need to clearly define what we are talking about when we use the
word “model.”

Cartoon model. These models are the typical cartoons we see in text books or in
discussion sections of biological papers. They are a sketch of what we thinkmight be
happening in a system of interest, but they do not provide quantifiable predictions.

Mathematical model. These models give quantifiable predictions that must be
true if the hypothesis (which is sketched as a cartoon model) is true. In many cases,
getting to predictions from a hypothesis is easy. For example, if I hypothesize that
protein A binds protein B, a quantifiable prediction would be that they are colocal-
ized when I image them. However, sometimes harder work and deeper thought is
needed to generate quantitative predictions. This often requires “mathematizing”
the cartoon. This is how amathematical model is derived from a cartoonmodel. Of-
tentimes when biological physicists refer to a “model,” they are talking about what
we are calling a mathematical model.

Statistical model. Essentially, a statistical model specifies the likelihood and prior.
Statisticians often use the word “model” in this context. As a simple example, con-
sider themeasurement of the length of aC. elegans eggs. A plausible statistical model
would be that the egg lengths are Gaussian distributed (and therefore are described
by amean and a standard deviation). The statisticalmodel can include anymathema-
tization of cartoons we did to generate a mathematical model, and can also contain
any information about any possible effects we might see in a measurement.

1.9 Bayes’s theorem as a model for learning

We will close today’s lecture with a discussion of Bayes’s theorem as as model for
learning. Let’s say we did an experiment and got data set D1 as an investigation of
hypothesis H. Then, our posterior distribution is

P(H | D1, I) =
P(D1 | H, I)P(H | I)

P(D1 | I) . (1.16)

Now, let’s say we did another experiment and got data D2. We already know D1
ahead of this experiment, do our prior is P(H | D1, I), which is the posterior from
the first experiment. So, we have

P(H | D1,D2, I) =
P(D2 | D1,H, I)P(H | D1, I)

P(D2 | D1, I)
. (1.17)
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Now, we plug in Bayes’s theorem applied to our first data set, equation (1.16), giving

P(H | D1,D2, I) =
P(D2 | D1,H, I)P(D1 | H, I)P(H | I)

P(D2 | D1, I)P(D1 | I) . (1.18)

By the product rule, the denominator is P(D1,D2 | I). Also by the product rule,

P(D2 | D1,H, I)P(D1 | H, I) = P(D1,D2 | H, I). (1.19)

Inserting these expressions into equation (1.18) yields

P(H | D1,D2, I) =
P(D1,D2 | H, I)P(H | I)

P(D1,D2 | I) . (1.20)

So, acquiring more data gave us more information about our hypothesis in that same
way as if we just combined D1 and D2 into a single data set. So, acquisition of more
andmore data serves to help us learnmore andmore about our hypothesis or param-
eter value.
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2 Parameter estimation from repeated measurements

In the last lecture, we learned about Bayes’s theorem as a way to update a hypothesis
in light of new data. We use the word “hypothesis” very loosely here. Remember, in
the Bayesian view, probability can describe the plausibility of any proposition. The
value of a parameter is such a proposition. In this lecture, we will learn about how to
do a Bayesian estimate of a parameter. Before we do, a note on notation.

2.1 Notation of parts of Bayes’s Theorem

In the last lecture, you probably noticed, and were perhaps frustrated by, the no-
tational overloading of the letter P. Using P was useful in the last lecture to avoid
confusion as we went from discussing the desiderata of a measure of plausibility and
in discussing of probabilities of outcomes. To help aid in notation, we will use the
following conventions going forward.

• Probability densities describing measured data are denoted with f.
• Probability densities describing parameter values, hypotheses, or other non-

measured quantities, are denoted with g.
• A set of parameters for a given model are denoted θ .

So, if we were to write down Bayes’s theorem for a parameter estimation problem, it
would be

g(θ | D, I) = f(D | θ , I) g(θ | I)
f(D | I) . (2.1)

For, probabilities written with a g denote the prior or posterior, and those with an f
denote the likelihood or evidence.

Furthermore, since the contents of I are always implicitly assumed to be part of
any statistical model we will construct, we will henceforth not explicitly show it to
reduce clutter. So, we write Bayes’s theorem as

g(θ | D) =
f(D | θ ) g(θ )

f(D)
, (2.2)

which is clearer notation, I think, for setting up our inference problems.

2.2 Bayes’s theorem as applied to simple parameter estimation

Wewill consider one of the simplest examples of parameter estimation. Let’s say we
measure a parameter μ in multiple independent experiments. This could be beak
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depths of finches, fluorescence intensity in a cell, a dissociation constant for two
bound proteins, etc. The possibilities abound.

Our measurements of this parameter are D = {x1, x2, . . . xn} ≡ x. Our “hy-
pothesis” in this case, is the value of the parameter μ , so we have θ = μ . We
wish to calculate g(μ | x), the posterior probability distribution for the parameter
μ , given the data. Values of μ for which the posterior probability is high are more
probable (that is, more plausible) than those for which is it low.

To compute the posterior probability, we use Bayes’s theorem.

g(μ | x) = f(x | μ ) g(μ )
f(x) . (2.3)

Since the evidence, f(x) does not depend on the parameter of interest, μ , it is really
just a normalization constant, so we do not need to consider it explicitly. We now
have to specify the likelihood f(x | μ ) and the prior g(μ ).

Specification of the likelihood/prior pair is what statistical modeling is all about.
We will talk in most more depth about constructing these models in the next lecture.
We need a little more background on probability distributions to do that, and we will
get that in the tutorials for next week. For now, we will investigate an oft-used statis-
tical model, that of a Gaussian likelihood with uninformative priors (with a precise
definition of uninformative coming in the next lecture). The goal here is to show
how you can compute and characterize the posterior distribution analytically.

2.3 The likelihood

To specify the likelihood, we have to ask what we expect from the data, given a value
of μ . If there are no errors or confounding factors at all in our measurements, we
expect xi = μ for all i. In this case

g(x | μ ) =
n∏

i=1

δ (xi − μ ), (2.4)

the product of Dirac delta functions. Of course, this is really never the case. There
will be some errors in measurement and/or the system has variables that confound
the measurement. What, then should we choose for our likelihood?

This question is made sharper if we think about the likelihood in terms of the
statistical model we defined in the last lecture. It is the probability distribution that
describes how the data relate to the parameter we are trying to measure. Indeed,
specifying the likelihood is part of the modeling process. In Tutorial 3b, we will
learn more about probability distributions, but for now we will introduce one useful
distribution to use in our analyses.
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2.4 The Gaussian distribution

A univariate Gaussian, or Normal, probability distribution has a probability density
function (PDF) of

f(x | μ , σ ) = 1√
2π σ 2

exp
[
−(x − μ )2

2σ 2

]
. (2.5)

The parameter μ is called the mean of the distribution and σ 2 is called the variance,
with σ being called the standard deviation. Importantly, the mean and standard de-
viation in this context are names of parameters of the distribution; they are not what
you compute directly from data.

The central limit theorem says that any quantity that emerges from a large num-
ber of subprocesses tends to be Gaussian distributed, provided none of the subpro-
cesses is very broadly distributed. We will not prove this important theorem, but
we will make use of it when choosing likelihood distributions when we learn about
building statistical models next week. Indeed, in the simple case of estimating a sin-
gle parameter where many processes may contribute to noise in the measurement,
the Gaussian distribution is a good choice for a likelihood.

More generally, themulti-dimensionalGaussian distribution forx = (x1, x2, · · · , xn)
is

f(x | μ , σ ) = (2π)− n
2 (det Σ )−

1
2 exp

[
−1

2
(x− μ )T · Σ−1 · (x− μ )

]
,

(2.6)

where μ = {μ 1, μ 2, . . . , μ n} is an array of means (again, here “mean” is the name
of the parameter of the Gaussian, not of the mean of a measurement, which does not
even make sense here, since xi is a single measurement). The parameter Σ is a sym-
metric positive definite matrix called the covariance matrix. If off-diagonal entry
Σ ij is nonzero, then xi and xj are correlated. In the case where all xi are independent,
all off-diagonal terms in the covariance matrix are zero, and the multidimensional
Gaussian distribution reduces to

f(x | μ , σ ) =
n∏

i=1

1√
2π σ 2

i
exp

[
−(xi − μ i)

2

2σ 2
i

]
, (2.7)

where σ 2
i is the ith entry along the diagonal of the covariance matrix. This is the

variance associated with measurement i. So, if all independent measurements have
the same variance andmean, which is to say that themeasurements are independent
and identically distributed (i.i.d.), the multi-dimensional Gaussian reduces to

f(x | μ , σ ) =
(

1
2π σ 2

)− n
2

exp

[
− 1

2σ 2

n∑
i=1

(xi − μ )2

]
. (2.8)
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2.5 The likelihood revisited: and another parameter

For the purposes of this demonstration of parameter estimation, we assume the
Gaussian distribution is a good choice for our likelihood for repeated measurements.
We have to decide how the measurements are related to specify how many entries
in the covariance matrix we need to specify as parameters. It is often the case that
the measurements i.i.d, so that only a single mean and variance are specified. So, we
choose our likelihood to be

f(x | μ , σ ) =
(

1
2π σ 2

) n
2

exp

{
− 1

2σ 2

n∑
i=1

(xi − μ )2

}
. (2.9)

By choosing this as our likelihood, we are saying that we expect our measurements
to have a well-defined mean μ with a spread described by the variance, σ 2.

But wait a minute; we now have another parameter, σ , beyond the one we’re
trying tomeasure. So, our statisticalmodel has two parameters, and Bayes’s theorem
now reads

g(μ , σ | x) = f(x | μ , σ ) g(μ , σ )
f(x) . (2.10)

Afterwe compute the posterior, we can still find the posterior probability distribution
we are after by marginalizing.

g(μ | x) =
∫ ∞

0
dσ g(μ , σ | x). (2.11)

2.6 Choice of prior

Because the evidence f(x) is entirely determined by the likelihood, prior, and normal-
ization condition of the posterior, we need only to specify the likelihood and prior to
get the posterior. We have chosen a Gaussian distribution for our likelihood, so now
we need to specify g(μ , σ ). The prior encodes what we know about the parameters
before the experiments. The prior may be informed by previous experiments, as we
discussed in section 1.9. We will talk in depth in the next lecture about choices of
priors. For the present, we will assume that μ and σ are independent such that

g(μ , σ ) = g(μ ) g(σ ). (2.12)

Further, we will assume a Uniform prior for μ and a Jeffreys prior for σ . Specifi-
cally,

g(μ ) =

 (μmax − μmin)
−1 μmin < μ < μmax,

0 otherwise,
(2.13)
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and

g(σ | I) =

 (ln(σmax/σmin) σ )−1 σmin < σ < σmax

0 otherwise.
(2.14)

For g(μ ), all values between μmin and μmax are equally likely. We have put bounds
on the values that μ can take, and we will work in the limit where these bounds are
far from any peak in the likelihood in what follows. Similarly, for g(σ ), all values of
the logarithm of σ are equally likely (as wewill derive in the next lecture), and it, too,
has bounds.

2.7 The posterior

Now that we have specified the likelihood and prior, we have the posterior.

g(μ , σ | x) = c
σ n+1 exp

[
− 1

2σ 2

n∑
i=1

(xi − μ )2

]
, (2.15)

where we have absorbed all constants in to the normalization constant c6.

So, we are done! We have now updated our knowledge of μ and σ . We could
just plot the posterior distribution. We could show it as a contour plot in the μ -σ
plane, for instance.

But, it would be nice to get the posterior into a bit of a cleaner form. We can
show, after some algebraic grunge, that

n∑
i=1

(xi − μ )2 = n(x̄ − μ )2 + nr2, (2.16)

where

r2 =
1
n

n∑
i=1

(xi − x̄)2 (2.17)

is the sample variance and

x̄ =
1
n

n∑
i=1

xi (2.18)

6We do this here for convenience, but when we do model selection later on, we will have to com-
pute the evidence, so we should be careful about the normalization constants of the priors throughout
our calculations.
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is the sample mean. Thus, we have

g(μ , σ | x) = c e−nr2/2σ 2

σ n+1 exp
[
−n(μ − x̄)2

2σ 2

]
. (2.19)

In this form, we immediately see that, regardless the value of σ , the most probable
value of μ is x̄. This is perhaps not surprising that the most probable value of μ is
the sample mean, but it is pleasing how nicely it falls out of the analysis.

Now, it would really like to get a summary of the posterior to be able to report
some nice numbers, like the most probable value of μ , x̄, instead of a plot.

2.7.1 The mean μ

We wanted to get g(μ | x) in the first place. As we said before, we can get that by
marginalizing over σ .

g(μ | x) =
∫ ∞

0
dσ g(μ , σ | x) (2.20)

= c
∫ ∞

0

dσ
σ n+1 exp

[
−n(μ − x̄)2 + nr2

2σ 2

]
.

This integral is a little gnarly, but we can evaluate it. We end up getting

g(μ | x) ∝
(

1 +
(μ − x̄)2

r2

)− n
2

∝

( n∑
i=1

(xi − μ )2

)− n
2

. (2.21)

I have written the expression in two equivalent forms because it is sometimes more
convenient to use one or the other. They are proportional, which you can verify for
yourself. For now, we’ll use the first expression, since it is convenient for computing
the marginalized posteriors. We can integrate this to get the normalization constant,
giving

g(μ | x) =
Γ
(n

2

)
√

π Γ
(n−1

2

) 1
r

(
1 +

(μ − x̄)2

r2

)− n
2

. (2.22)

The normalization contains gamma functions. This distribution has a name. It is
the Student-t distribution, albeit with a nonstandard parametrization. As we now
know, it describes the mean of a Gaussian distribution with unknown variance from
which the data were drawn. As written, the Student-t distribution above is said to
have n − 1 degrees of freedom.

As we have already determined, the most probable value of μ is x̄. We would like
to describe an error bar7 for this parameter μ . Since we know its posterior, the error

7I’m using the term “error bar” loosely here. We will sharpen this definition later in the course.
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bar is just some summary of the posterior distribution. We could report the error bar
to contain the set of values of μ , centered on x̄, that contain a given percentage of
the probability.

The common practice for getting the error bar is to approximate the posterior
distribution as Gaussian and report intervals based on the standard deviation of the
Gaussian approximation. To get a Gaussian approximation, we expand the logarithm
of posterior probability distribution function in a Taylor series about its maximum.

ln g(μ | x) = constant− n
2

ln
(

1 +
(μ − x̄)2

r2

)
(2.23)

≈ constant− n(μ − x̄)2

2r2 . (2.24)

Exponentiating and evaluating the normalization constant yields

g(μ | x) ≈ 1√
2πr2/n

exp
[
−(μ − x̄)2

2r2/n

]
, (2.25)

a Gaussian distribution with mean x̄ and variance r2/n. Recall that r2 is the sample
variance, so the variance of the Gaussian approximation of the posterior distribution
is the sample variance divided by n. The quantity r/

√
n is referred to as the standard

error of the mean, which is often how error bars are reported. We now know that
it describes the width of the (Gaussian approximation of the) posterior distribution
describing the parameter value we sought to measure.

2.7.2 The variance σ 2

Often overlooked is an estimate for the variance. Remember, whenwe tookmeasure-
ments, we did not assumewe knew the variance of themeasurements. Wewould also
like an estimate of it.

We take a similar approach. We marginalize the full posterior over μ .

g(σ | x) =
∫ ∞

−∞
dμ g(μ , σ | x). (2.26)

The integral is again doable, but also again a bit gnarly. The result is

g(σ | x) = c
σ n exp

[
− nr2

2σ 2

]
. (2.27)

We can compute the normalization constant, which involves a little messy integra-
tion, giving

g(σ | x) =
(
nr2)(n−1)/2

2(n−3)/2 Γ
(n−1

2

)
σ n exp

[
− nr2

2σ 2

]
. (2.28)
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We can find the most probable σ (note that the normalization constant is not nec-
essary for this calculation). This is found by finding the value of σ for which the
derivative of the log posterior is zero.

d
dσ ln g(σ | x) = d

dσ

(
−n ln σ − nr2

2σ 2

)
= − n

σ +
nr2

σ 3 . (2.29)

This is zero when σ 2 = r2, or

σ 2 =
1
n

n∑
i=1

(xi − x̄)2. (2.30)

We can also compute a confidence interval on the parameter σ . Note, though,
that its distribution, g(σ | x), is not symmetric, as seen in Fig. 2.

n = 3

n = 10

n = 30

n = 100

0 0.5 1 1.5 2 2.5 3

σ

0

1

2

3

4

5

f(σ
 | 

x)

Figure 2: The posterior distribution of σ with r = 1 for various values of n. It
becomes more symmetric as n grows.

Given that the distribution is not symmetric, we might want to provide a point
estimate for σ using expectation values, instead of finding the most probable value.
The integrals are nasty, but can be evaluated.

⟨σ ⟩ =
∫ ∞

0
dσ σ g(σ | x) =

Γ
(n−2

2

)
Γ
(n−1

2

) √n
2

r. (2.31)

Alternatively, we could compute the expectation value for σ 2,

⟨σ 2⟩ =
∫ ∞

0
dσ σ 2 g(σ | x) = n

n − 1
r2 =

1
n − 1

n∑
i=1

(xi − x̄)2, (2.32)
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which may be familiar to you as the so-called sample variance, or the unbiased esti-
mate of the variance. Really, by choosing to report the most probable value of σ , the
⟨σ ⟩, or

√
⟨σ 2⟩, we are just choosing one property of g(σ | x) to report. We actually

know the whole distribution, though, so whatever we choose is just a summary of
it. These summaries are nevertheless useful, since they can concisely describe the
posterior. For a Gaussian example like this, everything is nicely behaved. As we will
later see, computing summary statistics without investigating the whole posterior
can be a risky enterprise, and not advised.
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3 Constructing Bayesian models

In the last lecture, we saw how to perform parameter estimation for repeated mea-
surements with a Gaussian likelihood and prior that goes like the inverse of the stan-
dard deviation of the Gaussian. Most of last lecture was then finding ways to sum-
marize the posterior. We saw, and this is generally true, that we need only to specify
the likelihood and prior to build the statistical model. In this lecture, we will discuss
ways to build a statisticalmodel. Wewill do this using two examples, learning general
principles as we work through them.

3.1 Example 1: Mitotic spindle size

Matt Good and coworkers (Good, et al., Science, 342, 856–860, 2013) developed
a microfluidic device where they could create droplets of cytoplasm extracted from
Xenopus eggs and embryos (see Fig. 3). A remarkable property aboutXenopus extract
is thatmitotic spindles spontaneously form; the extracted cytoplasmhas all the ingre-
dients to form them. This makes it an excellent model system for studying spindles.
With their device, Good and his colleagues were able to study how the size of the cell
affects the dimensions of the mitotic spindle; a simple, yet beautiful, question. The
experiment is conceptually simple; they made the droplets and then measured their
dimensions and the dimensions of the spindles using microscope images.

the absence of growth (9). Although micrometer-
scale organelles and intracellular structures have
been shown to adapt and function across a wide
spectrum of cell sizes (10–14), mechanisms of
size scaling remain poorly understood.

We focused on the mitotic spindle, a dynamic
bipolar structure consisting of microtubules and
many associated factors that must be appropri-
ately sized to accurately distribute chromosomes
to daughter cells. During development, spindle
size correlates with cell size in the embryos of
invertebrates (15, 16), amphibians (9) (fig. S1),
andmammals (17). However, it is unknownwheth-
er spindle size is governed by compositional
changes as part of a developmental blueprint or
whether spindle size is coupled directly to phys-
ical properties of the cell, such as size and shape.
Although molecular mechanisms of spindle size
regulation have been proposed (9–13), the exis-
tence of a causal link between cell size and spindle
size remains unclear.

Because of the difficulty of modulating cell
size in vivo, we investigated spindle size scaling

by developing an in vitro system of cell-like
droplets of varying size containing Xenopus egg
or embryo cytoplasm. Xenopus egg extracts tran-
sit the cell cycle in the absence of cell boundaries
and recapitulate many cell biological activities
in vitro, including spindle assembly (18, 19). To
match cell size changes during Xenopus embryo-
genesis, we tuned compartment volume 1,000,000-
fold by usingmicrofluidic systems (Fig. 1A and fig.
S2). A polyethylene glycol (PEG)–ylated stearate
served as a surfactant to prevent droplets from
coalescing and to prevent cytoplasmic proteins
from interacting with the boundary (Fig. 1A).

Metaphase spindle length and width scaled
with droplet size in vitro (Fig. 1, B and C, and fig.
S3). Spindles, which normally have a steady-
state length of 35 to 40 mm in bulk egg extract
(20), became smaller as the size of the encapsu-
lating droplet decreased (Fig. 1C and fig. S3).
Spindle size scaling was roughly linear in droplet
diameters ranging from 20 to 80 mm (Fig. 1C),
whereas in larger droplets spindle size matched
that of unencapsulated egg extracts. Spindle as-

sembly efficiency decreased in very small drop-
lets and dropped to zero in droplets with a diameter
less than 20 mm (fig. S3, C and D). Thus, two
regimes of scaling were observed: one in which
spindle size was coupled to droplet diameter and
a second in which they were uncoupled. These
two regimes were similar to spindle scaling trends
observed in vivo during early Xenopus embryo-
genesis (Fig. 1, C and D, and fig. S1B) (9). Thus,
compartmentalization is sufficient to recapitulate
spindle size scaling during embryogenesis in
the absence of any developmental cues (e.g.,
transcription).

We considered two possible explanations for
the scaling of spindle size with cell or droplet
size. The position of cell or droplet boundaries
could directly influence spindle size through in-
teraction with microtubules. Alternatively, cyto-
plasmic volume could limit the amount ofmaterial
for assembly, which has been proposed for cen-
trosome size regulation inCaenorhabditis elegans
(12, 21) and spindle size regulation in mouse
and sea snail embryos (17, 22). To distinguish
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Fig. 1. Spindle length scaleswith compartment size in vitro and in vivo.
(A) System for creating cell-like compartments in vitro, including a passivated
boundary, cell-free cytoplasm capable of assembling metaphase spindles (Xenopus
egg or embryo extracts), and tunable compartment size. PHS, polyhydroxy-
stearate. (B) Spindles in droplets, compressed to improve image quality, corre-
sponding to spheres 80, 55, and 40 mm in diameter. Uneven shading is due to
image stitching. Scale bars indicate 20 mm. (C) Spindle length in encapsulated
X. laevis egg extract scaled with droplet size in vitro. (Left) Linear scaling regime.
(Inset) Scaling prediction. Raw data (orange circles) and average spindle length

(orange squares) T SD across 5-mm intervals in droplet diameter are shown.
P value (<10−60) and R2 (0.34) calculated from linear fit to raw droplet data in
20- to 80-mm diameter range. (Right) Full scaling curve in vitro. For com-
parison, gray bars indicate two standard deviations from average embryo data
in (D). (D) Spindle length scaling in vitro mirrored length scaling in the X. laevis
embryo through stage 8, with similar linear scaling regimes and a plateau where
spindle size was uncoupled from compartment size. Raw data from embryos
across 5-mm intervals in cell diameter (gray circles) and average spindle length
(black squares) T 2 SD (thick error bars) are shown.
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REPORTS

Figure 3: Schematic of spindle size experiment. Scale bars are 20 µm. Taken
from Fig. 1 of Good, et al., Science, 342, 856–860, 2013.

The question the authors were after was about how the spindle size scaled with
the diameter of the droplet. The data they acquired are shown in Fig. 4.

3.1.1 The cartoon model

Recall in lecture 1 that wewent through the process of developing a statistical model,
starting with a cartoon model, mathematizing it, and then making a statistical model
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Figure 4: Spindle length versus droplet diameter.

describing how the data might vary from the mathematical model due to naturally
occurring variability and that in the experiments. Good and coworkers hypothesized
that the length of spindles is regulated by the total amount of tubulin available to
make them. Specifically, the three key principles of their “cartoon” model are:

1. The total amount of tubulin in the droplet or cell is conserved.

2. The total length of polymerized microtubules is a function of the total tubulin
concentration after assembly of the spindle. This results from the balances of
microtubule polymerization rate with catastrophe frequencies.

3. The density of tubulin in the spindle is independent of droplet or cell volume.

3.1.2 The mathematical model

From these principles, we need to derive a mathematical model that will provide
us with testable predictions. The derivation follows, and you may read it if you are
interested. Since our main focus here is building a statistical model, you can skip
ahead to equation (3.14), where we define a mathematical expression relating the
spindle length, l to the droplet diameter, d, which depends on two parameters, γ
and ϕ .

Principle 1 above (conservation of tubulin) implies

T0V0 = T1(V0 − Vs) + TsVs, (3.1)

whereV0 is the volume of the droplet or cell, Vs is the volume of the spindle, T0 is the
total tubulin concentration (polymerized or not), T1 is the tubulin concentration in
the cytoplasm after the the spindle has formed, andTs is the concentration of tubulin
in the spindle. If we assume the spindle does not take up much of the total volume
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of the droplet or cell (V0 ≫ Vs, which is the case as we will see when we look at the
data), we have

T1 ≈ T0 −
Vs

V0
Ts. (3.2)

The amount of tubulin in the spindle can we written in terms of the total length of
polymerized microtubules, LMT as

TsVs = αLMT, (3.3)

where α is the tubulin concentration per unitmicrotubule length. (Wewill see that it
is unimportant, but from the known geometry of microtubules, α ≈ 2.7 nmol/µm.)

We now formalize assumption 2 into a mathematical expression. Microtubule
length should grow with increasing T1. There should also be a minimal threshold
Tmin where polymerization stops. We therefore approximate the total microtubule
length as a linear function,

LMT ≈
{

0 T1 ≤ Tmin

β (T1 − Tmin) T1 > Tmin.
(3.4)

Because spindles form inXenopus extract, T0 > Tmin, so there exists a T1 with Tmin <
T1 < T0. Thus, going forward, we are assured that T1 > Tmin. So, we have

Vs ≈ α β T1 − Tmin

Ts
. (3.5)

With insertion of our expression for T1, this becomes

Vs ≈ α β
(

T0 − Tmin

Ts
− Vs

V0

)
. (3.6)

Solving for Vs, we have

Vs ≈
α β

1 + α β/V0

T0 − Tmin

Ts
=

V0

1 + V0/α β
T0 − Tmin

Ts
. (3.7)

We approximate the shape of the spindle as a prolate spheroid with major axis length
l and minor axis length w, giving

Vs =
π
6

lw2 =
π
6

k2l3, (3.8)

where k ≡ w/l is the aspect ratio of the spindle. We can now write an expression for
the spindle length as

l ≈
(

6
πk2

T0 − Tmin

Ts

V0

1 + V0/α β

) 1
3

. (3.9)
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For small droplets, with V0 ≪ α β , this becomes

l ≈
(

6
πk2

T0 − Tmin

Ts
V0

) 1
3

=

(
T0 − Tmin

k2Ts

) 1
3

d, (3.10)

where d is the diameter of the spherical droplet or cell. So, we expect the spindle
size to increase linearly with the droplet diameter for small droplets.

For large V0, the spindle size becomes independent of droplet size;

l ≈
(

6α β
πk2

T0 − Tmin

Ts

) 1
3

. (3.11)

We can define two parameters to describe the data,

γ =

(
T0 − Tmin

k2Ts

) 1
3

(3.12)

ϕ =

(
6α β

π

) 1
3

. (3.13)

We assume that γ and ϕ are the same for all data. We can rewrite the general model
expression in terms of these parameters as

l(d; γ , ϕ ) ≈ γd
(1 + (d/ϕ )3)

1
3
. (3.14)

For small and large droplets, respectively, we have

l ≈ γd for d/ϕ ≪ 1, (3.15)

l ≈ γ ϕ for d/ϕ ≫ 1. (3.16)

Note that the expression for the linear regime gives bounds for γ . Obviously, γ > 0.
Because l ≤ d, lest the spindle not fit in the droplet, we also have γ ≤ 1. The
parameter ϕ is independent of the system geometry, so it only has the physical lower
bound of ϕ > 0.

3.1.3 A comment on the model parameters

We went through some algebraic manipulations to get our mathematical model in
a form with two parameters. We want to try to identify independent parameters in
your mathematical before doing regression analysis. In a trivial example, imagine
someone proposed the following model to use in a regression on (x, y) data:
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y = ax + bx + c. (3.17)

Obviously, it would be silly to have both a and b as regression parameters, and
we should instead define a new parameter d = a + b and use that as a regression
parameter. In the case of spindle length, we had parameters T0, Tmin, Ts, k, α , and
β , but, as we saw, we can only resolve two parameters, γ and ϕ . Furthermore, if we
happen to be in the linear regime, ϕ does not enter the expressions, so we obviously
cannot resolve it. Similarly, we can only determine ϕ if we are in the plateau regime.

3.1.4 The statistical model: The likelihood

Wehave amathematical model, so nowwe are left to specify the likelihood and prior.
We will start with the likelihood. The data are pairs of droplet diameters and spindle
lengths. We denote one such pair as (di, li), and the whole data set as D = d, l. The
parameters are θ = γ , ϕ . So, the likelihood is f(D | θ ) = f(d, l | γ , ϕ , θ s), where
θ s are the parameters associated with the statistical model (as opposed to γ and ϕ ,
which are associated with the mathematical model).

We need a probabilistic model about how the observe data might vary stochasti-
cally about the mathematical model. We can write

li = l(di; γ , ϕ ) + ei, (3.18)

where ei is how much the measured spindle length differs from the predicted length
for the measured drop diameter. So, we are left to choose how ei is distributed.

Because many processes come together to make a spindle, and then to measure
its length, it is reasonable to assume that ei is Gaussian distributed. Themean of this
Gaussian should be zero, since on average, the model should fit the data. One way
to write this is

ei ∼ Norm(0, σ i). (3.19)

This reads as, “The error ei is Normally distributed with mean zero and standard
deviation σ i.” This notation is commonly used to make a sentence like the one I just
quoted more concise. We could also write out the full PDF.

f(ei | σ i) =
1√

2π σ 2
i
e−e2

i /2σ 2
i . (3.20)

Thus, for a single data point, we have

f(di, li | γ , ϕ , σ i) =
1√

2π σ 2
i
exp

[
−(li − l(di; γ , ϕ ))2

2σ 2
i

]
. (3.21)
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This could be equivalently written as

li ∼ Norm(l(di; γ , ϕ ), σ i). (3.22)

Now, if eachmeasurement is independent, the likelihoods of each data pointmul-
tiply, giving

f(d, l | γ , ϕ , {σ}) = 1
(2π)n/2

∏
i σ i

exp

[
−
∑

i

(li − l(di; γ , ϕ ))2

2σ 2
i

]
,

(3.23)

where n is the number of observations of di, li pairs we have and {σ} represents the
σ i values. If these are all equal, we have a single σ , which gives a likelihood of

f(d, l | γ , ϕ , σ ) = 1
(2π σ 2)n/2 exp

[
− 1

2σ 2

∑
i

(li − l(di; γ , ϕ ))2

]
. (3.24)

This can equivalently be written as

li ∼ Norm(l(di; γ , ϕ ), σ ) ∀i. (3.25)

We thus have our likelihood. We have assumed that each measurement is indepen-
dent of the others and that the variation from the model is homoscedastic, which
means that the magnitude of the error of measured data from the model is the same
for all data points (as opposed to heteroscedastic).

3.1.5 Choice of prior

We are now left to the choice of the prior. Before we embark on the journey of choos-
ing the prior, I quote Efron and Hastie from their book, Computer Age Statistical In-
ference.

For 200 years, however, two impediments stood between Bayesian the-
ory’s philosophical attraction and its practical application.

1 In the absence of relevant past experience, the choice of a prior dis-
tribution introduces an unwanted subjective element into scientific
inference.

2 Bayes’ rule looks simple enough, but carrying out the numerical
calculation of a posterior distribution often involves intricate higher-
dimensional integrals.
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Wewill deal with the second impediment in coming weeks when we useMarkov
chainMonteCarlo to handle the intricate integrals. Our goal now is to come upwith
a prior distribution that avoids subjectivity. As Efron and Hastie called this process
an impediment, we proceed with trepidation.

The prior encodes our knowledge about the parameters of the statistical model.
In this case, we have three parameters, γ and ϕ , which entered through the physical
model, and σ which entered through our modeling of the variability inherent in the
system and in measurement. So, we need to specify g(γ , ϕ , σ ).

Independence of priors. Our first step on the journey to specifying g(γ , ϕ , σ ) is
to note that these parameters should be independent of each other. The parameter
γ depends only on the aspect ratio of spindles, and the total concentration of tublin
in the cell, the concentration of tubulin in the cytoplasm, and the critical concentra-
tion of tubulin where microtubule growth arrests. The parameter ϕ depends on the
concentration of tubulin in a singlemicrotubule (known from the geometry ofmicro-
tubules) and a constant of proportionality between microtubule length and cytoplas-
mic tubulin concentration. Because they depend on distinct, independent physical
quantities, the parameters γ and ϕ are independent of each other. Similarly, the
parameter σ describes how much the spindle length differs from the prediction. It
is a bit harder to state that this is independent of γ and ϕ . However, doing so is a
less egregious approximation, perhaps, than assuming homoscedasticity in the first
place. So, we will proceed assuming all three parameters are independent, so

g(γ , ϕ , σ ) = g(γ ) g(ϕ ) g(σ ). (3.26)

Uninformative priors. If we want to reduce subjectivity in our prior, we want to
remain as ignorant as possible about the parameters beforewe see the data. However,
we are not completely ignorant. For example, we know for sure that 0 ≤ γ ≤ 1 based
on physical arguments stated at the end of section 3.1.2. This should also be encoded
in our prior, such that g(γ ) = 0 for all negative γ and for all γ > 1.

If we want to avoid subjectivity, we might say, then, that any value of γ on the
interval from zero to one is equally likely as any other. In this case, we have

g(γ ) =
{

1 0 ≤ γ ≤ 1,

0 otherwise,
(3.27)

or

γ ∼ Uniform(0, 1), (3.28)

which says that the prior distribution of γ is Uniform on the interval [0, 1]8. This no-
tion of assigning equal probability to all possibilities is often referred to as Laplace’s

8Strictly speaking, we should have that γ > 0, not γ ≥ 0, since a zero value for γ under this
model would mean that spindles always have zero length.
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Principle of Insufficient Reason.

Unlike γ , ϕ has no upper bound. Yes, it must be positive, but the upper bound
is not apparent. Remember, though, that the prior contains all information we know
before the experiment. For example, we know that the mitotic spindle in a one-cell
Xenopus embryo do not span the entire cell, and that the cell is about 2 mm across
(huge!). So, the absolute maximum we could expect for γ ϕ is 2 mm. So there is a
reasonable maximum we could choose.

So, we could choose aUniform prior for ϕ on the interval of, say zero to tenmm.
But is this really uninformative? John Venn and Ronald Fisher, famous attackers of
a Bayesian approach, would say no. They could argue that we could equally well
have chosen to to parametrize the model in terms of ξ = ϕ−3 instead so that the
theoretical expression for spindle length is

l(d; γ , ϕ ) =
γd

(1 + ξd3)
1
3
. (3.29)

If we chose a Uniform prior on ϕ , then the prior on ξ is no longer Uniform. Recall
the change of variables formula from multivariate calculus.

g(ξ ) =
∣∣∣∣dϕ
dξ

∣∣∣∣ g(ϕ ). (3.30)

Taking g(ϕ ) to be a constant (which it is for a Uniform distribution), we perform the
change of variables, to get

g(ξ ) =

∣∣∣∣∣− ξ− 4
3

3

∣∣∣∣∣ g(ϕ ) = constant · ξ− 4
3 , (3.31)

which is no longer flat. So perhaps in cases like this, a Uniform prior is not actually
uninformative; we are biasing toward a certain parametrization. We desire trans-
formation invariance, meaning that the prior should be the same functional depen-
dence on ϕ if we transform the parameter in a certain way.

Generically, thismeans that if we have a set of parameters θ that are transformed
into a new set of parameters ζ , we should choose g(θ ) such that∣∣∣∣∂(ζ 1, ζ 2, . . .)

∂(θ 1, θ 2, . . .)

∣∣∣∣ g(ζ (θ )) (3.32)

has the same functional form asg(θ ), up to amultiplicative constant. The first factor
in this equation denotes the Jacobian, which is the absolute value of the determinant
of the Jacobi matrix.

So, in the present example let’s say we want our prior to be invariant if we trans-
form ϕ to a new variable ξ such that ξ = ϕ a. That is, we want

g(ξ (ϕ )) =

∣∣∣∣dϕ
dξ

∣∣∣∣ g(ϕ ) = aϕ a−1g(ϕ ) (3.33)
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to have the same ϕ dependence as g(ϕ ). If we pick g(ϕ ) = c/ϕ , where c is a
constant, we see that this is indeed the case.

g(ξ (ϕ )) =
ac
ϕ , (3.34)

which has the same ϕ -dependence.

This kind of prior, which is uninformative maintaining transformational invari-
ance like we have just described, is a case of a Jeffreys prior (discussed very briefly
at the end of this lecture). In fact, in portions of the literature, including in Sivia’s
book, such a prior, g(θ ) ∝ 1/θ , is just called “a Jeffreys prior.” For the purposes of
this course, this is what we mean when we refer to a Jeffreys prior.

It makes sense, then, to also parametrize σ with a Jeffreys prior, since we could
also have chosen to parametrize the likelihood with τ = σ−1.

Proper and improper priors. Our prior for γ , being Uniform on the interval from
zero to one, is proper, in the sense that it is properly normalized. If we did not have
bounds on it, we would call it an improper prior, since it cannot be normalized. The
same is true for the Jeffreys prior. If we do not define bounds for a prior of the form
g(θ ) ∝ 1/θ , it cannot be normalized, since∫ ∞

b

dθ
θ (3.35)

diverges for any positive b, as does∫ b

0

dθ
θ . (3.36)

Usually, this is not a problem for the problem of parameter estimation, that is
computing g(θ | D). This is because for extreme values of the parameters θ , the
likelihood typically is vanishingly small. Recall, the posterior is

g(θ | D) =
f(D | θ ) g(θ )∫
dθ f(D | θ ) g(θ ) . (3.37)

Since f(D | θ ) typically is tiny for extreme parameter values, it overwhelms the
finiteg(θ ) in the numerator, and in the integral in the denominator. Furthemore, any
normalization constants forg(θ ) cancel outwith those appearing in the denominator
while computing the posterior.

While this is convenient for the parameter estimation problem, as we will see in
later lectures, we do need to exactly compute the evidence,∫

dθ f(D | θ ) g(θ ), (3.38)
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when doing model selection. So, we should bound and normalize the priors with
reasonable bounds. We can write our prior for our example problem with spindle
lengths as

g(γ , ϕ , σ ) = g(γ ) g(ϕ ) g(σ ), (3.39)

with

g(γ ) =
{

1 0 ≤ γ ≤ 1,

0 otherwise,
(3.40)

g(ϕ ) =

{
1

ϕ ln(ϕmax/ϕmin)
ϕmin ≤ ϕ ≤ ϕmax,

0 otherwise,
(3.41)

g(σ ) =
{

1
σ ln(σmax/σmin)

σmin ≤ σ ≤ σmax,

0 otherwise.
(3.42)

Alternatively, we could write this as

γ ∼ Uniform(0, 1), (3.43)

ϕ ∼ Jeffreys(ϕmin, ϕmax), (3.44)

σ ∼ Jeffreys(σmin, σmax). (3.45)

3.1.6 Choosing bounds

We saw that we could choose the bounds on γ with physical arguments. We would
like to make similar choices for bounds for ϕ and σ . We already made a physical
argument based on the size of Xenopus embryos that the maximal ϕ cannot be more
than a fewmillimeters. Its lower bound cannot be zero because this would mean that
the spindle length would always be zero. We might instead choose a lower bound to
be something like 10 nanometers, about the size of a microtubule nucleus.

Choosing bounds on σ can be a bit more challenging, because it is describing
variability in the experiment. Wemight choose an upper bound close to the maximal
size of a spindle, sincewewould not get variation bigger than that. So, onemillimeter
is plenty big for an upper bound. For the lower bound, we might again choose 10
nanometers, as this is about the size of four or five tubulin diameters, which should
be the smallest fluctuation we could imagine seeing.
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3.1.7 Computing the posterior

Our specification of the posterior is now complete. We have specified the likelihood
and prior. The evidence can be calculated by integrating the product of the likelihood
and prior over all parameter values. Actually computing, plotting, and summarizing
the posterior is a separate challenge. Specifically, it is impediment number 2 laid out
by Efron and Hastie. This is the subject of the next few weeks of the course.

3.2 Example 2: Worm reversals

In Homework 3.3, we consider reversals upon exposure to blue light of C. elegans
that have a Channelrhodopsin in a specific neuron. There is some probability p of
reversal. Say we do n trials and observe r reversals. The likelihood is Binomially
distributed according to the story of the Binomial distribution. So, Bayes theorem
reads

g(p | n, r) = f(r | p, n) g(p)
f(r | n) , (3.46)

where

f(r | p, n) = n!
(n − r)!r! pr(1 − p)n−r, (3.47)

which we could alternatively write as

r | p, n ∼ Binom(n, p), (3.48)

(Note that I wrote g(p) instead of g(p | n) because they are equal; n has no bearing
on p.)

As we consider our choice of prior, g(p), Think back to the first lecture when we
talked about Bayes’s theorem as a model for learning. The idea there was that we
know something before (a priori) acquiring data, and then we update our knowledge
after (a posteriori). So, we come in with the prior and out with the posterior after ac-
quiring data. It mightmake sense, then, that the prior and the posterior distributions
are the same. That is to say they are the same distribution, but with different param-
eters. The parameters get updated going from the prior to the posterior. When this
is the case, the prior is said to be conjugate to the likelihood. This makes sense:
the likelihood determines the relationship between the prior and the posterior, so it
should determine the functional form of the prior/posterior such that they are the
same.

3.2.1 Conjugate priors

What functional form can we choose for the prior g(p) such that the posterior g(p |
n, r, I)has the same functional form? This requires some seriousmathematicalwork,
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but the answer is the Beta distribution. The Beta distribution is parametrized by two
positive parameters, a and b,

g(p | a, b) = pa−1(1 − p)b−1

B(a, b) , (3.49)

where

B(a, b) = Γ (a)Γ (b)
Γ (a + b) (3.50)

is the Beta function. The distribution is defined on the interval 0 ≤ p ≤ 1. Impor-
tantly, or a = b = 1, we get a Uniform distribution. The Uniform distribution on
the interval from zero to one is therefore a special case of the Beta distribution.

Now, if we insert a Beta distribution for the posterior and prior, we have

g(p | n, r, a, b) = f(r | p, n) g(p | a, b)
f(r | n) (3.51)

=
1

f(r | n)
n!

(n − r)!r! pr(1 − p)n−r pa−1(1 − p)b−1

B(a, b) (3.52)

=
1

f(r | n)B(a, b)
n!

(n − r)!r! pr+a−1(1 − p)n−r+b−1. (3.53)

In looking at this expression, the only bit that depends on p is pr+a−1(1−p)n−r+b−1,
which is exactly the p-dependence of a Beta distribution with parameters r + a and
n − r + b. Because the posterior must be normalized, the posterior must be a Beta
distribution and

1
f(r | n)B(a, b)

n!
(n − r)!r! =

1
B(r + a, n − r + b) . (3.54)

We have just normalized the posterior without doing any nasty integrals! So, the
posterior is

g(p | n, r, a, b) = pr+a−1(1 − p)n−r+b−1

B(r + a, n − r + b) , (3.55)

or,

p | n, r, a, b ∼ Beta(r + a, n − r + b). (3.56)

So, we can see that conjugacy is useful. For a given likelihood, if we know its
conjugate prior, we can just immediately write down the posterior in a clear form.
The Wikipedia page on conjugate priors has a useful table of likelihood-conjugate
pairs.
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Note though that a closed form conjugate does not always exist for a given likeli-
hood, especially for complicated models, and when they do exist, they may be very
difficult to find. This does limit their utility. Further, there is no reason why a poste-
rior and prior should have the same functional form; all analysis is completely valid
without conjugacy. Sivia has stinging words about using conjugate priors: “While
we might expect our initial understanding of the object of interest to have a bear-
ing on the experiment we conduct, it seems strange that the choice of the prior pdf
should have to wait for, and depend in detail upon, the likelihood function.”

3.3 The impediment is not resolved

Wetried to be as objective as possible in choosing our priors. We intentionally tried to
be uninformative, and took into account transformation invariance. This has flaws,
since it is mathematically impossible to come up with a prior that can be invariant
to all transformations. There are other strategies for choosing uninformative priors.
Among them are

• Using what is generically called a Jeffreys prior by computing the Fisher infor-
mation from the likelihood.

• Using the principle of maximum entropy. Entropy can be thought of as a for-
mal metric of ignorance, which we wish to maximized when being objective.
Sivia talks about this in Chapter 5.

Both of these methods are outside the scope of this course, but they are important
to consider when choosing priors.

Now consider Sivia’s comment I just quoted. And now consider the title of a
recent paper by Gelman, Simpson, and Betancourt, “The prior can generally only
be understood in the context of the likelihood.” Some of the section headings in that
paper are also gold, like “Uniform priors are not a panacea and can do unbounded
damage.”

So, obviously there is disagreement about constructing priors. One the one hand,
we want to be as objective as possible in predicting priors. That said, we almost
always do know something about parameter values a priori. We really should encode
that in the prior. Furthemore, a probability density function is just a pdf. It only
becomes a prior when it is connected to a likelihood. So we may need to this with
some degree of pragmatism.

It is very hard to be truly informative in more complicated models, such as the
very powerful hierarchical models we will work with later in the class. Furthermore,
when using flat priors, the other impediment comes back in. Flat priors can really
wreak havoc onMarkov chainMonte Carlo (MCMC) samplers in hierarchical mod-
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els, thereby exacerbating the difficulty in computing the posterior. (If you cannot
compute it, what good is it?)

It’s probably no coincidence that Gelman and coworkers are lead developers on
one of themajorMCMCpackages, called Stan. In fact, the Stanwiki has some guide-
lines about choice of priors, which run quite contradictory to what we have just dis-
cussed here. Specifically, as of October 11, 2017, there is this: “Some principles we
don’t like: invariance, Jeffreys, entropy.” The Stan developers are obviously going
to be more pragmatic in their views, since they are in the business of actually com-
puting posteriors. They tend to favor weakly informative priors; things like broad
Gaussians. Their reasons, again quoting the Wiki,

• Weakly informative prior should contain enough information to
regularize: the idea is that the prior rules out unreasonable param-
eter values but is not so strong as to rule out values thatmightmake
sense

• Weakly informative rather than fully informative: the idea is that
the loss in precision by making the prior a bit too weak (compared
to the true population distribution of parameters or the current ex-
pert state of knowledge) is less serious than the gain in robustness
by including parts of parameter space that might be relevant.

In the end, my view is that you want to encode all of the information you confi-
dently have about parameters, and notmore, into the prior. For example, before seeing
the data, if you think that the variability inmeasured spindle length should be about a
10 microns, you could choose a weakly informative prior, like a Gaussian with mean
of one micron and standard deviation of 3 microns, and you would probably be fine.
As you can see in homework 3.4, the choice of prior often has very little effect on the
end result of your inference.
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4 The theory of Markov chain Monte Carlo

4.1 Why MCMC?

When doing Bayesian analysis, our goal is very often to compute a posterior distri-
bution, g(θ | D), where θ = {θ (1), θ (2), . . .} is a set of possibly many parameters.
However, just having an analytical expression for the posterior is of little use if we
cannot understand any properties about it. Importantly, we often want to marginal-
ize the posterior; that is, we want to integrate over parameters we are not interested
in and get simpler distributions for those we are. This is often necessary to under-
stand all but the simplest models. Doing these marginalizations requires what David
MacKay calls “macho integration,” which is often impossible to do analytically.

Furthermore, we may also want to compute expectations out of the posterior.
For example, we might want the mean, or expectation value, of parameter θ (1). If
we know the posterior, this is

E[θ (1)] =

∫
dθ θ (1) g(θ | D). (4.1)

Generally, we can compute the expectation of any function of the parameters, h(θ ),
and we often want to. This is

E[h(θ )] =
∫

dθ h(θ ) g(θ | D). (4.2)

So, pretty much anything we want to know about the posterior requires computation
of an integral.

MCMCallows us to sample out of an arbitrary probability distribution, which in-
cludes pretty much any posterior we could write down.9 By sampling, we mean that
we can choose values of the parameters, θ , where the probability that we choose a
given value is proportional to the posterior probability. Note that each sample con-
sists of a complete set of parameters θ ; that is a sample contains a value for θ (1), a
value for θ (2), …. We are more likely to choose samples of high probability than of
low. Using MCMC, we collect a large number of these samples.

From these samples, we can trivially performmarginalizations. Say we are inter-
ested in the marginalized distribution

g(θ (1) | D) =

(∫
dθ (2)

∫
dθ (3) · · ·

)
g(θ | D). (4.3)

9Well, not any. For some cases, we may not be able to make a transition kernel that satisfies the
necessary properties, which I describe in the following pages.

33



Given a set of MCMC samples out of g(θ | D), to get a set of samples out of
g(θ (1) | D), we simply ignore the values of θ (2), θ (3), …! Then, given the samples
of the marginalized posterior, we can plot the CDF of the marginalized posterior as
an ECDF of the samples, and the PDF of the marginalized posterior as a histogram
of the samples.

To compute expectations, the MCMC samples are again very convenient. Now,
we just approximate the integral with an average over samples.

E(h(θ )) =
∫

dθ h(θ ) g(θ | D) ≈ 1
N

N∑
i=1

h(θ i), (4.4)

where θ i is the ith of N MCMC samples taken from the posterior.

It is now abundantly clear why the ability to generate samples from the posterior
is so powerful. But generating samples that actually come from the probability dis-
tribution of interest is not a trivial matter. We will discuss how this is accomplished
through MCMC.

4.2 The basic idea behind MCMC

We often draw independent samples from a target distribution. For example, we
could usenp.random.uniform(0, 1, 100) to draw 100 independent samples
from a uniform distribution on the domain [0, 1]. Generating independent samples
for complicated target distributions is difficult.

But the samples need not be independent! Instead, we only need that the sam-
ples be generated from a process that generates samples from the target distribution
in the correct proportions. In the case of the parameter estimation problem, this dis-
tribution is the posterior distribution parametrized by θ , g(θ | D). For notational
simplicity in what follows, since we know we are always talking about a posterior
distribution, we will use P(θ ) for shorthand notation for an arbitrary distribution of
theta.

The approach of MCMC is to take random walks in parameter space such that
the probability that a walker arrives at point θ is proportional to P(θ ). This is the
main concept and is important enough to repeat.

The approach of MCMC is to take random walks in parameter space such
that the probability that a walker arrives at point θ is proportional to P(θ ).

If we can achieve such a walk, we can just take the walker positions as samples
from the distributions. To implement this random walk, we define a transition ker-
nel, T(θ i+1 | θ i), the probability of a walker stepping from position θ i in parameter
space to position θ i+1. The transition kernel defines a Markov chain, which you

34



can think of as a random walker whose next step depends only on where the walker
is right now; i.e., it has no memory.

The condition that the probability of arrival at point θ i+1 is proportional toP(θ i+1)
may be stated as

P(θ i+1) =

∫
dθ i T(θ i+1 | θ i)P(θ i). (4.5)

Here, we have taken θ to be continuous. Were it discete, we just replace the inte-
gral with a sum. When this relation holds, it is said that the target distribution is an
invariant distribution or stationary distribution of the transition kernel. When
this invariant distribution is unique, it is called a limiting distribution. We want to
choose our transition kernel T(θ i+1 | θ i) such that P(θ ) is limiting. This is the case
if equation (4.5) holds and the chain is ergodic. An ergodic Markov chain has the
following properties:

1. It is aperiodic. A periodic Markov chain can only return to a given point in
parameter space after k, 2k, 3k, . . . steps, where k is the period. An aperiodic
chain is not periodic.

2. It is irreducible, which means that any point in parameter space is accessible
to the walker from any other.

3. It is positive recurrent, which means that the walker will surely come revisit
any point in parameter space in a finite number of steps.

So, if our transition kernel satisfies this checklist and equation (4.5), it will even-
tually sample the posterior distribution. We will discuss how to come up with such a
transition kernel in a moment; for now we focus on the important concept of “even-
tually” in the preceding sentence.

4.3 Tuning

Imagine for a moment that we devised a transition kernel that satisfies the above
properties. Say we start a walker at position θ 0 in parameter space and it starts walk-
ing according to the transition kernel. Most likely, for those first few steps, thewalker
is traversing a part of parameter space that has incredibly low probability. Once it got
to regions of high probability, the walker would almost never return to the region of
parameter space in which it began. So, unless we sample for an incredibly long time,
those first few samples visited are over-weighted. So, we need to let the walker walk
for a while without keeping track of the samples so that it can arrive at the limiting
distribution. This is called tuning, otherwise known as burn-in or warm up10.

10When using NUTS with PyMC3, the tuning is a bit more than just burn-in, where we simply
neglect samples. The algorithm is actively choosing stepping strategies during the tuning phase.
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There is no general way to tell if a walker has reached the limiting distribution, so
we do not know howmany burn-in steps are necessary. There are several heuristics.
For example, Gelman and coauthors proposed generating several tuning chains and
computing theGelman-Rubin R̂ statistic,

R̂ =
variance between the chains

mean variance within the chains
. (4.6)

Limiting chains have R̂ ≈ 1, so you can use this as a metric for having achieved
stationarity. Gelman and his coauthors in their famous book Bayesian Data Analysis
suggest that |1 − R̂| < 0.1 as a good rule of thumb for stationary chains.

4.4 Generating a transition kernel: TheMetropolis-Hastings algorithm

The Metropolis-Hastings algorithm covers a widely used class of algorithms for
MCMC sampling. I will first state the algorithm here, and then we will show that
it satisfies the necessary conditions for the walkers to be sampling out of the target
posterior distribution.

4.4.1 The algorithm/kernel

Say our walker is at position θ i in parameter space.

1. We randomly choose a candidate position θ ′ to step to next from an arbitrary
proposal distribution K(θ ′ | θ i).

2. We compute theMetropolis ratio,

r =
P(θ ′)K(θ i | θ ′)

P(θ i)K(θ ′ | θ i)
. (4.7)

3. If r ≥ 1, accept the step and set θ i+1 = θ ′. Otherwise, accept the step with
probability r. If we do reject the step, set θ i+1 = θ i.

The last two steps are used to define the transition kernel T(θ i+1 | θ i). We can
define the acceptance probability of the proposal step as

α (θ i+1 | θ i) = min(1, r) = min
(

1,
P(θ i+1)K(θ i | θ i+1)

P(θ i)K(θ i+1 | θ i)

)
. (4.8)

Then, the transition kernel is

T(θ i+1 | θ i) = α (θ i+1 | θ i)K(θ i+1 | θ i). (4.9)
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4.4.2 Detailed balance

This algorithm seems kind of nuts! How on earth does this work? To investigate
this, we consider the joint probability, P(θ i+1, θ i), that the walker is at θ i and θ i+1
at sequential steps. We can write this in terms of the transition kernel,

P(θ i+1, θ i) = P(θ i)T(θ i+1 | θ i)

= P(θ i) α (θ i+1 | θ )K(θ i+1 | θ i)

= P(θ i)K(θ i+1 | θ ) min
(

1,
P(θ i+1)K(θ i | θ i+1)

P(θ i)K(θ i+1 | θ i)

)
= min [P(θ i)K(θ i+1 | θ i),P(θ i+1)K(θ i | θ i+1)]

= P(θ i+1)K(θ i | θ i+1) min
(

1,
P(θ i)K(θ i+1 | θ i)

P(θ i+1)K(θ i | θ i+1)

)
= P(θ i+1) α (θ i | θ i+1)K(θ i | θ i+1)

= P(θ i+1)T(θ i | θ i+1). (4.10)

Thus, we have

P(θ i)T(θ i+1 | θ i) = P(θ i+1)T(θ i | θ i+1). (4.11)

This says that the rate of transition from θ i to θ i+1 is equal to the rate of transition
from θ i+1 to θ i. In this case, the transition kernel is said to satisfy detailed balance.

Any transition kernel that satisfies detailed balance has P(θ ) as an invariant dis-
tribution. This is easily shown.∫

dθ i P(θ i)T(θ i+1 | θ i) =

∫
dθ i P(θ i+1)T(θ i | θ i+1)

= P(θ i+1)

[∫
dθ i T(θ i | θ i+1)

]
= P(θ i+1), (4.12)

since the bracketed term is unity because the transition kernel is a probability.

Note that all transition kernels that satisfy detailed balance have an invariant dis-
tribution. (If the chain is ergodic, this is a limiting distribution.) But not all kernels
that have an invariant distribution satisfy detailed balance. So, detailed balance is a
sufficient condition for a transition kernel having an invariant distribution.
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4.4.3 Choosing the transition kernel

There is an art to choosing the transition kernel. The original Metropolis algorithm
(1953), took K(θ i+1 | θ i) = 1. As a rule of thumb, you want to choose a proposal
distribution such that you get an acceptance rate of about 0.4. If you accept every
step, the walker just wanders around and it takes a while to get to the limiting dis-
tribution. If you reject too many steps, the walkers never move, and it again takes a
long time to get to the limiting distribution. There are tricks to “tune” the walkers
to achieve the target acceptance rate.

Gibbs sampling, which is popular, though we will not go into the details, is a
special case of aMetropolis-Hastings sampler, as is theNoU-turn sampler (NUTS),
which is an example of a Hamiltonian Monte Carlo sampler. These both result in
significant performance improvements for important subclasses of problems. The
sampler employed by emcee, the affine invariant ensemble sampler (Goodman and
Weare, J. Comp. Sci., 5, 65–80, 2000), utilizes many walkers walking at the same
time, sharing information between them. It is technically not aMetropolis-Hastings
sampler, but many of the ideas presented in this lecture there apply for ensuring that
the sampler is indeed sampling the appropriate posterior distribution.

Finally, importantly, the No U-Turn sampler and the affine invariant sample can
only handle continuous variables; they cannot sample discrete variables. Depending
on your problem, this could be a serious limitation.

In this class, we will use PyMC3, which uses NUTS. We will not delve into the
algorithmic details, but it helps to have a feel for how the algorithm works. To ed-
ucate yourself more‘ recommend Michael Betencourt’s conceptual introduction to
Hamiltonian Monte Carlo and this lecture by him on that topic.
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5 Model comparison

We have spent a lot of time in the past couple of weeks looking at the problem of pa-
rameter estimation. Really, we have been stepping through the process of bringing
our thinking about a biological system into a concrete statistical model that defines a
likelihood for the data and the parametrization thereof. Writing down Bayes’s theo-
rem then gives the posterior,

g(θ | D) =
f(D | θ ) g(θ )

P(D)
, (5.1)

where θ is the set of parameters. Solving the parameter estimation problem involves
computing the posterior, which usually involves summarizing the posterior into a
form that can be processed intuitively.

5.1 Adding models to the probabilities

When we write Bayes’s theorem for the parameter estimation problem, implicit in
the definition of the likelihood is the fact that we are using a specific statistical model.
To be complete, especially in the context of model comparison, we should include
which model we’re using in the conditions of the probabilities. Let Mi denote a
model i, and θ i be the set of parameters associated with Mi.11 Then, we have

g(θ i | D,Mi) =
f(D | θ i,Mi) g(θ i | Mi)

f(D | Mi)
. (5.2)

This is a more explicit description of the probabilities associated with the parameter
estimation problem.

5.2 Probabilities of models

Remember that Bayesian probability is a measure of the plausibility of any logical
conjecture. So, we can talk about the probability of models being true. So, what is
the probability that a model is true, given the observed data? Again, this is given by
Bayes’s theorem.

g(Mi | D) =
f(D | Mi) g(Mi)

f(D)
. (5.3)

This is Bayes’s theorem stated for themodel comparison problem. Let’s look at each
term in turn.

11Do not be confused by the subscript here. The i does not signify the ith parameter of a set of
parameters for a given mode. Here, it means that θ i describes the set of parameters for model i.
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• g(Mi | D), as we said before, is the probability that model Mi is true given the
measured data.

• f(D) is a normalization constant for the posterior that is computed bymarginal-
izing over all possible models∑

i

g(Mi | D) = 1 ⇒ f(D) =
∑

i

f(D | Mi) g(Mi). (5.4)

• g(Mi) is a measure of how plausible we thought model Mi is a priori, the prior
probability for model Mi. For example, if a proposed model violates a physical
conservation law, we know it is unlikely to be true even before we see the data.
In practice, we typically assign equal probability to allmodelswe have not ruled
out prior to seeing the data.

• f(D | Mi) is the likelihood of observing the data, given that model Mi is true.

As usual, we need to specify the likelihood and prior to assess the posterior proba-
bility of any given model. We already discussed how to specify the prior. We usually
assume all models are equally likely. How about the likelihood? Well, glancing at
equation (5.2), we see that the likelihood for the model comparison problem is the
evidence for the parameter estimation problem! Because the posterior in the param-
eter estimation problem, g(θ i | D,Mi), must be normalized, the evidence in the
parameter estimation problem, and therefore also the likelihood in the model com-
parison problem, is given by

f(D | Mi) =

∫
dθ i f(D | θ i,Mi) g(θ i | Mi). (5.5)

So, if we can compute the likelihood and priors from the parameter estimation prob-
lem and can integrate their product, we have the likelihood for themodel comparison
problem.

5.3 Bayes factors and odds ratios

Computing the absolute probability of amodel is difficult, since it would require con-
sidering all possible models, as is required to compute the normalization constant,
f(D). We therefore typicallymake pairwise comparisons betweenmodels. This com-
parison is called an odds ratio. It is the ratio of the probabilities of two models being
true.

Oij =
g(Mi)

g(Mj)

[
f(D | Mi)

f(D | Mj)

]
. (5.6)

The first factor in the product is the ratio of our prior knowledge of the truth of the
models. If they are equally likely, this ratio is unity. The bracketed ratio is called the
Bayes factor, which is the ratio of the evidences of the respective models.
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Note that if we compute all of the odds ratios comparing a given model k to all
others (and somehow did manage to consider all models that have nonzero probabil-
ity), we can compute the posterior probability of model Mi as

g(Mi | D) =
Oik∑
j Ojk

. (5.7)

5.4 Approximate computation of the Bayes factor

Evaluating the integral in equation (5.5) to compute the Bayes factor is in general
difficult. If the posterior is sharply peaked, we may compute this integral using the
Laplace approximation in which we approximate the integral by the height of the
peak times its width. In one dimension, this is

f(D | Mi) =

∫
dθ i f(D | θ i,Mi) g(θ i | Mi)

≈ f(D | θ ∗
i ,Mi) g(θ ∗

i | Mi)
√

2π σ 2
i , (5.8)

where θ ∗
i is theMAP estimate, and σ 2

i is the variance of theGaussian approximation
of the posterior. In n-dimensions, this is

g(D | Mi) =

∫
dθ i f(D | θ i,Mi) g(θ i | Mi) (5.9)

≈ f(D | θ ∗
i ,Mi) g(θ ∗

i | Mi) (2π)|θ i|/2
√

det Σ i, (5.10)

where Σ i is now the covariance matrix of the Gaussian approximation of the poste-
rior underMi. We have also denoted the number of parameters inMi to be |θ i|. Note
that we have already computed all of factors in the above product in the parameter
estimation problem if we solved it by optimization. Therefore, we already have what
we need to compute the (approximate) odds ratio.

5.5 The factors in the odds ratio

We can now write the approximate odds ratio as the product of three factors.

Oij ≈
(

g(Mi)

g(Mj)

)(
f(D | θ ∗

i ,Mi)

f(D | θ ∗
j ,Mj)

)(
g(θ ∗

i | Mi) (2π)|θ i|/2 √det Σ i

g(θ ∗
j | Mj) (2π)|θ j|/2√det Σ j

)
.

(5.11)

• The first term represents the prior probability of themodels. This is how plau-
sible we thought the models were before the experiment.
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• The second term is a measure of the goodness of fit. In other words, it com-
ments on how probable the data are given the model and the MAP estimate.

• The third term is a ratio of Occam factors. AnOccam factor is the ratio of the
volume of parameter space accessible to the posterior to that of the prior. This
is best seen by example. Consider a model M1 with a single parameter where
the parameter a that has a Uniform prior. Then,

Occam factor =
√

2πg(a∗ | M1)σ 1 =

√
2π σ 1

amax − amin
. (5.12)

Remember, σ 2
1 is the variance of the Gaussian approximation of the posterior.

So, the numerator here is the width of the posterior and the denominator is
the width of the prior.

Now, consider a model, M2 with two parameters, b and c, each with Uni-
form priors. In this case, we have

g(b∗, c∗ | Mj) =
1

bmax − bmin

1
cmax − cmin

, (5.13)

and the Occam factor is

Occam factor =
2π

√
det Σ 2

(bmax − bmin)(cmax − cmin)
. (5.14)

So, the volume of the parameter space accessible to the prior for model M2 is
larger than for M1, so the part of the odds ratio is greater than one, favoring
the model with fewer parameters. The ratio of Occam factors is then

σ i√
2π det σ 2

j

(bmax − bmin). (5.15)

Comparing the Occam factors of the twomodels, we see that the more param-
eters you have, the bigger the denominator of the Occam factor is, making the
Occam factor smaller. Furthermore, it is also often the case that complicated
models with lots of parameters also have smaller determinants of the covari-
ance because the multitude of parameters are “locked in” around the MAP
estimate. Thus, we see where the Occam factor gets its name, since it penal-
izes more complicated models.12

This approximate calculation shows us everything that goes into the odds ratio.
Any one factor can overwhelm the others:

• What we knew before

• How well the model fits the data

• How simple the model is
12Remember that Occam’s razor states that among competing hypotheses, the one with fewest

assumptions is preferred.
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5.6 Example: Are two data sets from the same Gaussian distribution?

We will now look at an example. Say I do two sets of measurements of property x,
a control and an experiment. We make nc control measurements and ne experiment
measurements. We consider two models. M1 says that both the control and the
experiment are chosen from the same underlying Gaussian distribution with mean
μ and variance σ . Model M2 says that control and experiment come from different
Gaussian distributions with means μ c and μ e. We wish to compare models M1 and
M2. The odds ratio is

O12 =
g(M1)

g(M2)

f(Dc,De | M1)

f(Dc,De | M2)
, (5.16)

whereDc denotes the data from the control experiment andDe denotes the data from
the experiment.

We will assume a prior that g(Mi) = g(Mj). Then, we are left to compute
f(Dc,De | M1) and f(Dc,De | M2). We can do this by approximate integration (see
section 4.3.1 of Sivia). Note that we assume a uniform prior on σ , with 0 < σ <
σmax. We could also try the problem with a Jeffreys prior on σ , but I do not feel like
doing the nasty integration. The result for the odds ratio is

O12 ≈
σmax (μmax − μmin)

π
√

2
n1 n2 s2−n1−n2

(n1 + n2) s2−n1
1 s2−n2

2
, (5.17)

where

s2 =
1

n1 + n2

∑
i∈D1∪D2

(xi − x̄)2, (5.18)

s2
1 =

1
n1

∑
i∈D1

(xi − x̄1)
2, (5.19)

s2
2 =

1
n2

∑
i∈D2

(xi − x̄2)
2, (5.20)

with

x̄ =
1

n1 + n2

∑
i∈D1∪D2

xi, (5.21)

x̄1 =
1
n1

∑
i∈D1

xi, (5.22)

x̄2 =
1
n2

∑
i∈D2

xi. (5.23)
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It seems that this question is often asked: does the experiment come fromadiffer-
ent process than the control? My opinion is that in most situations, the answer is an
obvious yes, and the more pertinent question is by how much they differ. Nonethe-
less, if we are asking the “if they are different” question, we can plug our data in
and easily compute the odds ratio. Be careful, though. This, too, should not be a
yes-or-no question. We should not really be asking if they come from different dis-
tributions, what are the odds that they do.

5.7 Caveats and motivation for information criteria

Gelman, et al., in their bookBayesian Data Analysis (3rd Ed, page 182), express some
concern about the approach we have taken here. I quote them, emphasis theirs,
bracketed comment mine.

This fully Bayesian approach has some appeal but we generally do not
recommend it because, in practice, the marginal likelihood [which we
have been calling the evidence from the parameter estimation prior] is
highly sensitive to aspects of the model that are typically assigned arbi-
trarily and are untestable from data.

These arbitrary and untestable aspects are typically the priors. We try to be uninfor-
mative, but they must be proper (meaning normalized) in order to domodel compar-
ison as we have done here. The Bayes factor is highly sensitive to the width of the
priors.

In my opinion, this method of model comparison is often perfectly legitimate
because the prior is part of themodel and, while untestable fromdata, is not arbitrary.
If constructed properly, the prior represents our knowledge before data acquisition
and should therefore naturally be included in model comparison.

Whatever your position on this matter, it is still useful to have other metrics for
assessing models.

5.8 Watanabe-Akaike Information Criterion (WAIC)

A good model is a predictive model. If we were to acquire more data under identical
conditions, the parameterswe derived from the posterior should be able to accurately
predict what those new data would look like. It makes sense to assess a model on
how well it can predict new data. Furthermore, the connection between predictive
capabilities and the Bayes factor is clear if you think about what must be true of a
predictive model. First, it must describe the data we have actually acquired well.
The goodness-of-fit term in the Bayes factor covers this. Second, it must describe
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new data well. If the parameters are such that it describes the data already collection
very well, but cannot predict, the model is not good. This usually happens when
the model has many parameters tailor-made for the data (such as fitting data with a
higher-order polynomial). This is captured in the Occam factor. So, models with
good Bayes factors are often predictive.

With that in mind, I will introduce a good metric for comparing models, the
Watanabe-Akaike Information Criterion, also known as the Widely Applicable
Information Criterion (WAIC). I will discuss it intuitively and not provide much
rigor. For detailed descriptions of what follows, I recommend reading chapter 7 of
Gelman, et al., Bayesian Data Analysis, 3rd Ed. and chapter 6 of McElreath, Statisti-
cal Rethinking.

In what follows, for notational convenience, I will drop explicit dependence of
Mi, and also drop the subscripts from the parameter set θ i. We define the predictive
density of a single data point x ∈ D as

single point predictive density =

∫
dθ f(x | θ ) g(θ | D). (5.24)

This is the likelihood for observing data point x, averaged over the posterior proba-
bility distribution of parameter values θ . We are therefore taking into account pos-
terior information and using the likelihood to assess goodness-of-fit. We can take the
product of each of the single point predictive densities in the data set and take the
logarithm to get the log pointwise predictive density, or lppd,

lppd = ln

(∏
x∈D

∫
dθ f(x | θ ) g(θ | D)

)
(5.25)

=
∑
x∈D

ln
(∫

dθ f(x | θ ) g(θ | D)

)
.

This gives a metric of how well the model manages to predict the observed data.
Put succinctly, the lppd is the sum of the logarithm of the average likelihood of each
observation in a data set.

This metric is biased toward complicated models, so we add a correction. We
compute the effective number of parameters, pWAIC as

pWAIC =
∑
i∈D

variance(ln f(x | D)), (5.26)

where the variance is computed over the posterior. Written out, this is

variance(ln f(x | D)) =

∫
dθ g(θ | D) (ln f(x | D))2
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−
(∫

dθ g(θ | D) ln f(x | D)

)2

. (5.27)

This parameter pWAIC, can be thought of as the number of unconstrained parameters
in amodel. Parameters that are influences only by the prior contribute little to pWAIC,
while those that are determined mostly by the data contribute more.

The WAIC is then

WAIC = −2(lppd− pWAIC). (5.28)

The factor of−2 is there for historical reasons to enable comparisons to the Akaike
Information Criterion (AIC) and the Deviance Information Criterion (DIC). These
two information criteria are also widely used, but have assumptions about Gaussian-
ity, and in the case of the AIC, also flat priors. The WAIC is a better choice.

Computing theWAIC is difficult, unless, of course, you managed to get MCMC
samples! Given a set of S MCMC samples of the parameters θ (where θ (s) is the
sth sample), the lppd may be calculated as

lppd =
∑
x∈D

ln

(
1
S

S∑
s=1

f(x | θ (s))

)
. (5.29)

Another beautiful example of how sampling converts integrals into sums. Similarly
we can compute pWAIC from samples.

pWAIC =
∑
x∈D

1
S − 1

S∑
s=1

(
log f(x | θ (s))− q(x)

)2
, (5.30)

where

q(x) = 1
S

S∑
s=1

ln f(x | θ (s)). (5.31)

While you can compute theWAIC from yourMCMC samples, PyMC3 has a built-in
function to do it.

For an intuitive description of the WAIC, you may think of it as an estimate of
the negative log likelihood of new data.13 That is, it is an estimate of how badly the
model would perform with new data. So, the lower theWAIC, the better the model.

13Stated precisely, the WAIC is an estimate of the out-of-sample deviance. “Out-of-sample” just
means data that is yet to come. I did not want to go through the trouble of defining deviance.
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5.9 The Akaike weights

The value of a WAIC by itself does not tell us anything. Only comparison of two or
moreWAICs makes sense. Recalling that theWAIC is a measure of a log likelihood,
if we exponentiate it, we get something proportional to a probability. If we have two
models, Mi and Mj, the Akaike weight of model i is

wi =
exp

[
−1

2 WAICi
]

exp
[
−1

2 WAICi
]
+ exp

[
−1

2 WAICj
] . (5.32)

This weight may be interpreted as an estimate of the probability that Mi will make
the best predictions of new data.14 We can generalize this to multiple models.

wi =
exp

[
−1

2 WAICi
]∑

j exp
[
−1

2 WAICj
] . (5.33)

We can compute a quantity analogous to the Bayesian odds ratio,

wi

wj
= exp

[
−1

2
(WAICi −WAICj)

]
. (5.34)

5.10 Computing odds ratios and information criteria

Youmay have noticed that computing theWAIC almost always required performing
an MCMC calculation In the approximate calculation of the odds ratio, I only used
MAP information that could be found by optimization. This, however, is approxi-
mate, and has all the perils associatedwith posteriors that are strongly non-Gaussian.
There are information criteria that can be computed from MAP estimates as well.
These also have dangers associated with them.

So, how do you compute the odds ratio (via Bayes factor) fromMCMC?We can
use a technique called parallel-tempering Markov chain Monte Carlo (PTMCMC)
to exactly compute the odds ratio. As you likely have guessed, this is computationally
intensive, but effective. We will learn about this in an auxiliary lesson.

14This interpretation is common, but not entirely agreed upon.
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6 Frequentist methods

We have taken a Bayesian approach to data analysis in this class. So far, the main
motivation for doing so is that I think the approach is more intuitive. We often think
of probability as a measure of plausibility, so a Bayesian approach jibes with our nat-
ural mode of thinking. Further, the mathematical and statistical models are explicit,
as is all knowledge we have prior to data acquisition. The Bayesian approach, in my
opinion, therefore reflects intuition and is therefore more digestible and easier to
interpret.

Nonetheless, frequentistmethods are inwide use in the biological sciences. They
are not more or less valid than Bayesian methods, but, as I said, can be a bit harder
to interpret. Importantly, as we will soon see, they can very very useful, and easily
implemented, in nonparametric inference, which is statistical inference where no
model is assumed; conclusions are drawn from the data alone. In fact, most of our
use of frequentist statistics will be in the nonparametric context. But first, we will
discuss some parametric estimators from frequentist statistics.

6.1 The frequentist interpretation of probability

In the tutorials this week, we will do parameter estimation and hypothesis testing
using the frequentist definition of probability. As a reminder, in the frequentist def-
inition of probability, the probability P(A) represents a long-run frequency over a
large number of identical repetitions of an experiment. Much like our strategies thus
far in the class have been to start by writing Bayes’s theorem, for our frequentist
studies, we will directly apply this definition of probability again and again, using
our computers to “repeat” experiments many time and tally the frequencies of what
we see.

The approachwewill take is heavily inspired byAllenDowney’swonderful book,
Think Stats and from Larry Wasserman’s All of Statistics. You may also want to
watch this great 25-minute talk by Jake VanderPlas, where he discusses the differ-
ences between Bayesian and frequentist approaches.

6.2 The plug-in principle

In Bayesian inference, we tried to find the most probable value of a parameter. That
is, we tried to find the parameter values at the MAP, or maximum a posteriori prob-
ability. We then characterized the posterior distribution to get a credible region for
the parameter wewere estimating. Wewill discuss the frequentist analog to the cred-
ible region, the confidence interval in a moment. For now, let’s think about how to
get an estimate for a parameter value, given the data.
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Whilewhatwe are about to do is general, for now it is useful to have in yourmind a
concrete example. Imagine we have a data set that is a set of repeatedmeasurements,
such as the repeatedmeasurements of theDorsal gradient width we studied from the
Stathopoulos lab. We have a model in mind: the data are generated from a Gaussian
distribution. This means there are two parameters to estimate, the mean μ and the
variance σ .

To set up how we will estimate these parameters directly from data, we need to
make some definitions first. Let F(x) be the cumulative distribution function (CDF)
for the distribution. Remember that the probability density function (PDF), f(x), is
related to the CDF by

f(x) = dF
dx . (6.1)

For a Gaussian distribution,

f(x) = 1√
2π σ 2

e−(x−μ )2/2σ 2
, (6.2)

which defines our two parameters μ and σ .

A statistical functional is a functional of the CDF, T(F). A parameter θ of a
probability distribution can be defined from a functional, θ = T(F). For example,
the mean, variance, and median are all statistical functionals.

μ =

∫ ∞

−∞
dx x f(x) =

∫ ∞

−∞
dF(x) x, (6.3)

σ 2 =

∫ ∞

−∞
dx (x − μ )2 f(x) =

∫ ∞

−∞
dF(x) (x − μ )2, (6.4)

median = F−1(1/2). (6.5)

Now, say we made a set of n measurements, {x1, x2, . . . xn}. You can this of this
as a set of Dorsal gradient widths if you want to have an example in your mind. We
define the empirical cumulative distribution function, F̂(x) from our data as

F̂(x) = 1
n

n∑
i=1

I(xi ≤ x), (6.6)

with

I(xi ≤ x) =
{

1 xi ≤ x
0 xi > x.

(6.7)
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We saw this functional form of the ECDF in our first homework. We can then also
define an empirical distribution function, f̂(x) as

f̂(x) = 1
n

n∑
i=1

δ (x − xi), (6.8)

where δ (x) is the Dirac delta function. To get this, we essentially just took the
derivative of the ECDF.

So, we have now defined an empirical distribution that is dependent only on the
data. We now define a plug-in estimate of a parameter θ as

θ̂ = T(F̂). (6.9)

In other words, to get a plug-in estimate a parameter θ , we need only to compute
the functional using the empirical distribution. That is, we simply “plug in” the
empirical CDF for the actual CDF.

The plug-in estimate for the median is easy to calculate.

m̂edian = F̂−1(1/2), (6.10)

or themiddle-ranked data point. The plug-in estimate for themean or variance, seem
at face to be a bit more difficult to calculate, but the following general theorem will
help. Consider a functional of the form of an expectation value, r(x).∫

dF̂(x) r(x) =
∫

dx r(x) f̂(x) =
∫

dx r(x)
[

1
n

n∑
i=1

δ (x − xi)

]

=
1
n

n∑
i=1

∫
dx r(x)δ (x − xi) =

1
n

n∑
i=1

r(xi). (6.11)

This means that the plug-in estimate for an expectation value of a distribution is the
mean of the observed values themselves. The plug-in estimate of the mean, which
has r(x) = x, is

μ̂ =
1
n

n∑
i=1

xi ≡ x̄, (6.12)

where we have defined x̄ as the traditional sample mean, which we have just shown
is the plug-in estimate. This plug-in estimate is implemented in the np.mean()
function. The plug-in estimate for the variance is

σ̂ 2 =
1
n

n∑
i=1

(xi − x̄)2 =
1
n

n∑
i=1

x2
i − x̄2. (6.13)
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This plug-in estimate is implemented in the np.var() function.

We can compute plug-in estimates for more complicated parameters as well. For
example, for a bivariate distribution, the correlation between the two variables, x and
y, is defined with

r(x) =
(x − μ x)(y − μ y)

σ x σ y
, (6.14)

and the plug-in estimate is

ρ̂ =

∑
i(xi − x̄)(yi − ȳ)√

(
∑

i(xi − x̄)2) (
∑

i(yi − ȳ)2)
. (6.15)

6.3 Bias

The bias of an estimate is the difference between the expectation value of the esti-
mate and value of the parameter.

biasF( θ̂ , θ ) = ⟨ θ̂ ⟩ − θ =

∫
dx θ̂ f(x)− T(F). (6.16)

We often want a small bias because we want to choose estimates that give us back the
parameters we expect.

Let’s consider a Gaussian distribution. Our plug-in estimate for the mean is

μ̂ = x̄. (6.17)

In order to compute the the expectation value of μ̂ for a Gaussian distribution, it is
useful to know that

⟨x⟩ =
∫ ∞

−∞
dx x e−(x−μ )2/2σ 2

= μ . (6.18)

Then, we have

⟨ μ̂ ⟩ = ⟨x̄⟩ = 1
n

⟨∑
i

xi

⟩
=

1
n
∑

i

⟨xi⟩ = ⟨x⟩ = μ , (6.19)

so the bias in the plug-in estimate for the mean is zero. It is said to be unbiased.

To compute the bias of the plug-in estimate for the variance, it is useful to know
that

⟨x2⟩ =
∫ ∞

−∞
dx x2 e−(x−μ )2/2σ 2

= σ 2 + μ 2, (6.20)
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so

σ 2 = ⟨x2⟩ − ⟨x⟩2. (6.21)

So, the expectation value of the plug-in estimate is

⟨
σ̂ 2
⟩
=

⟨
1
n
∑

i

x2
i

⟩
−
⟨
x̄2⟩ = 1

n
∑

i

⟨
x2

i
⟩
−
⟨
x̄2⟩ = μ 2 + σ 2 −

⟨
x̄2⟩ .

(6.22)

We now need to compute
⟨
x̄2⟩, which is a little trickier. We will use the fact that the

measurements are independent, so ⟨xixj⟩ = ⟨xi⟩⟨xj⟩ for i ̸= j.

⟨
x̄2⟩ = ⟨(1

n
∑

i

xi

)2⟩
=

1
n2

⟨(∑
i

xi

)2⟩
=

1
n2

⟨∑
i

x2
i + 2

∑
i

∑
j>i

xixj

⟩

=
1
n2

∑
i

⟨
x2

i
⟩
+ 2

∑
i

∑
j>i

⟨xixj⟩

 =
1
n2

n(σ 2 + μ 2) + 2
∑

i

∑
j>i

⟨xi⟩⟨xj⟩


=

1
n2

(
n(σ 2 + μ 2) + n(n − 1)⟨x⟩2) = 1

n2

(
nσ 2 + n2 μ 2) = σ 2

n + μ 2.

(6.23)

Thus, we have⟨
σ̂ 2
⟩
=

(
1 − 1

n

)
σ 2. (6.24)

Therefore, the bias is

bias = − σ 2

n (6.25)

An unbiased estimator would instead be

n
n − 1

σ̂ 2 =
1

n − 1

n∑
i=1

(xi − x̄)2. (6.26)

Note that in the none of the above analysis depended on F(x) being the CDF of
a Gaussian distribution. For any distribution, we define the property of the distribu-
tion known as the mean as ⟨x⟩ and that known as the variance as ⟨x2⟩ − ⟨x⟩2.
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Comparison toBayesian treatment. Tocompare this parameter estimate to aBayesian
treatment, we will consider a Gaussian likelihood in a Jeffreys prior on σ . Recalling
Lecture 2, we found that in this case we got x̄ as our most probable value of μ , mean-
ing this is the value of μ at the MAP. The most probable value of σ 2 was σ̂ 2. But
wait a minute! We just found that was a biased estimator. What gives?

The answer is that we are considering the maximally probable values and not the
expectation value of the posterior. Recall that the posterior for estimating the pa-
rameters of a Gaussian distribution is

P(μ , σ | {xi} , I) ∝
e−n σ̂ 2/2σ 2

σ n+1 exp
[

n(μ − x̄)2

2σ 2

]
. (6.27)

After some gnarly integration to compute the normalization constant and the expec-
tation values of μ and σ 2 from this posterior, we get

⟨μ ⟩ = x̄ (6.28)

⟨σ 2⟩ = n
n − 1

ŝ2, (6.29)

the same as the unbiased frequentist estimators. Note that ⟨σ 2⟩ ̸= ⟨σ ⟩2. Remem-
ber, in frequentist statistics, we are not computing a posterior distribution describ-
ing the parameters. There is no such thing as the “probability of a parameter value”
in frequentist probability. A parameter has a value, and that’s that. We report a
frequentist estimate for the parameter value based on the expectation values of the
assumed underlying distribution. We just showed that, at least for a Gaussian, the
expectation value of the posterior gives the unbiased frequentist estimate and the
MAP gives the plug-in estimate.

Justification of using plug-in estimates. Despite the apparent bias in the plug-in
estimate for the variance, we will normally just use plug-in estimates going forward.
(We will use the hat, e.g. θ̂ , to denote an estimate, which can be either a plug-in
estimate or not.) Note that the bootstrap procedures we lay out in what follows do
not need to use plug-in estimates, butwewill use them for convenience. Why do this?
First, the bias is typically small. We just saw that the biased and unbiased estimators
of the variance differ by a factor of n/(n − 1), which is negligible for large n. In fact,
plug-in estimates tend to have much smaller error than the confidence intervals for
the parameter estimate, which we will discuss in a moment. Finally, we saw when
connecting to the Bayesian estimates that the expectation value is not necessarily
always what we want to describe; sometimes (though certainly not always, perhaps
even seldom) the MAP is preferred. In this sense, attempting to minimize bias is
somewhat arbitrary.
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6.4 Bootstrap confidence intervals

The frequentist analog to a Bayesian credible region is a confidence interval. Re-
member, with the frequentist interpretation of probability, we cannot assign a prob-
ability to a parameter value. A parameter has one value, and that’s that. We can only
describe the long-term frequency of observing results about random variables. So,
we can define a 95% confidence interval as follows.

If an experiment is repeated over and over again, the estimate I compute
for a parameter, θ̂ , will lie between the bounds of the 95% confidence
interval for 95% of the experiments.

While this is a correct definition of a confidence interval, some statisticians prefer
another. To quote Larry Wasserman,

[The above definition] is correct but useless since we rarely repeat the
same experiment over and over. A better interpretation is this: On day
1, you collect data and construct a 95 percent confidence interval for a
parameter θ 1. On day 2, you collect new data and construct a 95 percent
confidence interval for an unrelated parameter θ 2. On day 3, you collect
new data and construct a 95 percent confidence interval for an unrelated
parameter θ 3. You continue this way constructing confidence intervals
for a sequence of unrelated parameters θ 1, θ 2, . . .. Then 95 percent of
your intervals will trap the true parameter value. There us no need to
introduce the idea of repeating the same experiment over and over.

In other words, the confidence interval describes the construction of the confi-
dence interval itself. 95% of the time, it will contain the true (unknown) parameter
value. Wasserman’s description contains a reference to the true parameter value,
so if you are going to talk about the true parameter value, his description is useful.
However, the first definition of the confidence interval is quite useful if you want to
think about how repeated experiments will end up.

We will use the first definition in thinking about how to construct a confidence
interval. To construct the confidence interval, then, we will repeat the experiment
over and over again, each time computing θ̂ . We will then generate an ECDF of
our θ̂ values, and report the 2.5th and 97.5th percentile to get our 95% confidence
interval. But wait, how will we repeat the experiment so many times?

Remember that the data come from a probability distribution with CDF F(x).
Doing an experiment where we make n measurements amounts to drawing n num-
bers out of F(x)15. So, we could draw out of F(x) over and over again. The problem

15We’re being loose with language here. We’re drawing out of the distribution that has CDF F(x),
but we’re saying “draw out of F” for short.
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is, we do now know what F(x) is. However, we do have an empirical estimate for
F(x), namely F̂(x). So, we could draw n samples out of F̂(x), compute θ̂ from these
samples, and repeat. This procedure is called bootstrapping.

To get the terminology down, a bootstrap sample, x∗, is a set of n x values drawn
from F̂(x). A bootstrap replicate is the estimate θ̂

∗
obtained from the bootstrap

sample x∗. To generate a bootstrap sample, consider an array of measured values x.
We draw n values out of this array, with replacement. This is equivalent to sampling
out of F̂(x).

So, the recipe for generating a bootstrap confidence interval is as follows.

1) Generate B independent bootstrap samples. Each one is generated by drawing
n values out of the data array with replacement.

2) Compute θ̂ for each bootstrap sample to get the bootstrap replicates.

3) The100(1−α )percent confidence interval consists of the percentiles100α/2
and 100(1 − α/2) of the bootstrap replicates.

This procedureworks for any estimate θ̂ , be it themean,median, variance, skew-
ness, kurtosis, or any other esoteric thing you can think of. Note that we use the
empirical distribution, so there is never any assumption of an underlying “true” dis-
tribution. Thus, we are doing nonparametric inference on what we would expect for
parameters coming out of unknown distributions; we only know the data. We will
not discuss Bayesian nonparameterics, but they are generally not nearly as straight-
forward.16 In this way, frequentist procedures are often useful in the nonparametric
context.

There are plenty of subtleties and improvements to this procedure, but this is
most of the story. We will discuss bootstrap confidence intervals for regression pa-
rameters in the tutorials, but we have already covered the main idea.

6.5 Hypothesis tests

The frequentist analog to model comparison is hypothesis testing. But we should be
careful, it is an analog, but most definitety not the same thing. It is important to note
that frequentist hypothesis testing is different from Bayesian model comparison in
that in frequentist hypothesis tests, we will only consider how probable it is to get
the observed data under a specific hypothesis, often called the null hypothesis. It is

16But Bayesian nonparametrics is a fascinating and useful field. The basic idea is that you have
infinite dimensional priors over models and proceed with Bayesian inference from there. A new book
on the subject, Fundamentals of Nonparametric Baysian Inference, by Ghosal and van der Vaart, is a
good, complete reference.
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just a name for the hypothesis you are testing. We will not assess other hypotheses
nor compare them. Remember that the probability of a hypothesis being true is not
something that makes any sense to a frequentist.

A frequentist hypothesis test consists of these steps.

1) Clearly state the null hypothesis.

2) Define a test statistic, a scalar value that you can compute from data. Com-
pute it directly from your measured data.

3) Simulate data acquisition for the scenario where the null hypothesis is true.
Do this many times, computing and storing the value of the test statistic each
time.

4) The fraction of simulations for which the test statistic is at least as extreme
as the test statistic computed from the measured data is called the p-value,
which is what you report.

Weneed to be clear on our definition here. The p-value is the probability of observing
a test statistic being at least as extreme as what was measured if the null hypothesis
is true. It is exactly that, and nothing else. It is not the probability that the null
hypothesis is true.

Importantly, ahypothesis test is definedby thenull hypothesis, the test statis-
tic, andwhat it means to be at least as extreme. That uniquely defines the hypoth-
esis test you are doing. All of the named hypothesis tests, like the Student-t test,
the Mann-Whitney U-test, Welch’s test, etc., describe a specific hypothesis with a
specific test statistic, with a specific definition of what it means to be at least as ex-
treme (e.g., one-tailed or two-tailed). I can never remember what these are, nor do
I encourage you to; you can always look them up. Rather, you should just clearly
write out what your test is in terms of the hypothesis, test statistic, and definition of
extreme.

Now, the real trick to doing a hypothesis test is step 3, in which you simulate the
data acquisition assuming the null hypothesis was true. I will demonstrate two hy-
pothesis tests and how we can simulate them. For both examples, we will consider
the commonly encountered problem of performing the same measurements under
two different conditions, control and test. You might have in mind the example of
Dorsal gradient widths for wild type Dorsal versus those of the Dorsal-Venus con-
struct.

Test and control come from the same distribution. Here, the null hypothesis
is that the distribution F of the control measurements is the same as that G of the
test, or F = G. To simulate this, we can do a permutation test. Say we have n
measurements from control and m measurements from test. We then concatenate
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arrays of the control and test measurements to get a single array with n + m en-
tries. We then randomly scramble the order of the entries (this is implemented in
np.random.permuation()). We take the first n to be labeled “control” and
the last m to be labeled “test.” In this way, we are simulating the null hypothesis:
whether or not a sample is test or control makes no difference.

For this case, we might define our test statistic to be difference of means, or dif-
ference of medians. These can be computed from the two data sets and are a scalar
value.

Test and control have the same mean. The null hypothesis here is exactly as I
have stated, and nothing more. To simulate this, we shift the data sets so that they
have the same mean. In other words, if the control data are x and the test data are y,
then we define the mean of all measurements to be

z̄ =
nx̄ + mȳ
n + m . (6.30)

Then, we define

xshift,i = xi − x̄ + z̄, (6.31)

yshift,i = yi − ȳ + z̄. (6.32)

(6.33)

Now, the data sets xshift and yshift have the samemean, but everything else about them
is the same as x and y, respectively.

To simulate the null hypothesis, then, we draw bootstrap samples from xshift and
yshift and compute the test statistic from the bootstrap samples, over and over again.

In both of these cases, no assumptions were made about the underlying distribu-
tions. Only the empirical distributions were used; these are nonparametric hypoth-
esis tests.

6.5.1 Interpretation of the p-value

If the p-value is small, the effect is said to be statistically significant. But what is
small? I strongly discourage a bright line p-value used to deem a result statistically
significant or not. You computed the p-value, it has a specific meaning; you should
report it. I do not see a need to convert a computed value, the p-value, into a Boolean,
True/False on whether or not we attach the word “significant” to the result.

The question the p-value addresses is rarely the question we want to ask. For ex-
ample, say we are doing a test of the null hypothesis that two sets of measurements
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have the same mean. In most cases, which of the following questions are we inter-
ested in asking:

1) How different are the means of the two samples?

2) Would we say there is a statistically significant difference of the means of the
two samples? Or, more precisely, what is the probability of observing a differ-
ence inmeans of the two samples at least as large as the the observed difference
in means, if the two samples in fact have the same mean?

The second question is convoluted and often of little scientific interest. I would say
that the first question is much more relevant. To put it in perspective, say we made
trillions of measurements of two different samples and their mean differs by one part
per million. This difference, though tiny, would still give a low p-value, and there-
fore often be deemed “statistically significant.” But, ultimately, it is the size of the
difference, or the effect size we care about.

6.5.2 What is with all those names?

Youhavenodoubt heard ofmanynamed frequentist hypothesis tests, like theStudent-
t test, Welch’s t-test, the Mann-Whitney U-test, and countless others. What is with
all of those names? It helps to thinkmore generally about how frequentist hypothesis
testing is usually done.

To do a frequentist hypothesis test, people unfortunately do not do what I laid
out above, but typically follow the following prescription (borrowing heavily from
the treatment in Gregory’s excellent book).

1) Choose a null hypothesis. This is the hypothesis you want to test the truth of.

2) Choose a suitable test statistic that can be computed from measurements and
has a predictable distribution. For the example of two sets of repeated mea-
surements, we can choose as our statistic

T =
x̄1 − x̄2 − (μ 1 − μ 2)

SD

√
n−1

1 + n−1
2

,

where S2
D =

(n1 − 1)S2
1 + (n2 − 1)S2

2
n1 + n2 − 2

,

with S2
1 =

1
n1 − 1

∑
i∈D1

(xi − x̄1)
2, (6.34)

and S2
2 similarly defined. The T statistic is the difference of the difference

of the observed means and the difference of the true means, weighted by the
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spread in the data. This is a reasonable statistic for determining something
about means from data. This is the appropriate statistic when σ 1 and σ 2 are
both unknown but assumed to be equal. (When they are assumed to be un-
equal, you need to adjust the statistic you use. This test is called Welch’s t-
test.) It can be derived that this statistic has the Student-t distribution,

P(t) = 1√
π ν

Γ
( ν+1

2

)
Γ
( ν

2

) (1 +

(
t2

ν

))− ν+1
2

, (6.35)

where ν = n1 + n2 − 2. (6.36)

3) Evaluate the statistic frommeasured data. In the case of the Student-t test, we
compute T.

4) Plot P(t). The area under the curve where t > T is the p-value, the probabil-
ity that we would observe our data under the null hypothesis. Reject the null
hypothesis if this is small.

As you can see from the above prescription, item 2 can be tricky. Coming up with
test statistics that also have a distribution that we can write down is difficult. When
such a test statistic is found, the test usually gets a name. The main reason for do-
ing things this way is that most hypothesis tests were developed before computers,
so we couldn’t just bootstrap our way through hypothesis tests. (The bootstrap was
invented by Brad Efron in 1979.) Conversely, in the approach we have taken, some-
times referred to as “hacker stats,” we can invent any test statistic we want, and
we can test is by numerically “repeating” the experiment, in accordance with the
frequentist interpretation of probability.

So, I would encourage you not to get caught up in names. If someone reports a
p-value with a name, simply look up the things you need to define the p-values (the
hypothesis being tested, the test statistic, and what it means to be as extreme), and
that will give you an understanding of what is going on with the test.

That said, many of the tests with names have analytical forms and can be rapidly
computed. Most are included in thescipy.statsmodule. I have chosen to present
a method of hypothesis testing that is intuitive with the frequentist interpretation of
probability front and center. It also allows you to design your own tests that fit a null
hypothesis that you are interested in that might not be “off-the-shelf.”

6.5.3 Warnings about hypothesis tests

There are many.

1) An effect being statistically significant does not mean the effect is significant
in practice or even important. It only means exactly what it is defined tomean:
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an effect is unlikely to have happened by chance under the null hypothesis. Far
more important is the effect size.

2) The p-value is not the probability that the null hypothesis is true. It is the
probability of observing the test statistic being at least as extreme as what was
measured if the null hypothesis is true. I.e., if H0 is the null hypothesis,

p-value = P(test stat at least as extreme as observed | H0). (6.37)

It is not the probability that the null hypothesis is true given that the test statis-
tic was at least as extreme as the data.

p-value ̸= P(H0 | test stat at least as extreme as observed). (6.38)

We often actually want the probability that the null hypothesis is true, and the
p-value is often erroneously interpreted as this to great peril.

3) Null hypothesis significance testing does not say anything about alternative
hypotheses. Rejection of the null hypothesis does not mean acceptance of any
other hypotheses.

4) P-values are not very reproducible, as we will see in the tutorials when we do
“dance of the p-values.”

5) Rejecting a null hypothesis is also kind of odd, considering you computed

P(test stat at least as extreme as observed | H0). (6.39)

This does not really describe the probability that the hypothesis is true. This,
along with point 4, means that the p-value better be really low for you to reject
the null hypothesis.

6) Throughout the literature, you will see null hypothesis testing when the null
hypothesis is not relevant at all. People compute p-values because that’s what
they are supposed to do. The Dorsal gradient might be an example: of course
the gradients will be different; we have made a big perturbation. We slapped
a giant glowing barrel onto the Dorsal protein. Again, it gets to the point that
effect size is waaaaay more important than a null hypothesis significance test.

Given all these problems with p-values, I generally advocate for their abandon-
ment. I am not the only one. They seldom answer the question scientists are asking
and lead to great confusion.
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7 Introduction to images

This lecture was presented as a Jupyter notebook, available here.
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8 Parallel tempering MCMC

In this lecture, we will discuss parallel temperingMarkov chainMonte Carlo (PTM-
CMC). This technique allows for effective sampling of multimodal distributions and
it avoids getting trapped on local maxima of the posterior. Perhaps even more im-
portantly, it allows us to perform model selection.

8.1 The basic idea

Recall that the posterior distribution we seek to sample in the model selection prob-
lem is

g(θ i | D,Mi) ∝ g(θ i | Mi)f(D | θ i,Mi). (8.1)

Now, we define

ghot(θ i | D,Mi, β ) = 1
Zi(β ) g(θ i | Mi) [f(D | θ i,Mi)]

β (8.2)

=
1

Zi(β ) g(θ i | Mi) exp [β ln f(D | θ i,Mi)] . (8.3)

Here, β ∈ (0, 1] is an “inverse temperature” in analogy to statistical mechanics,
where the negative log likelihood,− ln f(D | θ i,Mi), is an energy. Keeping with the
analogy, the normalization constant Zi(β ), given by

Zi(β ) =
∫

dθ i g(θ i | Mi) [f(D | θ i,Mi)]
β , (8.4)

is called a partition function. We will call the distribution ghot(θ i | D,Mi, β ) a hot
posterior because it is the posterior with a high temperature.

If β is close to zero (the“high temperature” limit), we are just sampling the prior.
If β = 1, we are sampling our target posterior, the so-called “cold distribution.” So,
lowering β has the effect of flattening the posterior distribution. Therefore, walkers
at higher temperature (lower β ) are not trapped at local maxima. By occasionally
swapping walkers from adjacent temperatures, we can effectively sample a broader
swath of parameter space.

In practice, we choose a set of β ’s with β = [β 0, β 1, . . . , β m], with β i+1 < β i
and β 0 = 1. We propose a swap roughly every ns steps and accept it based on criteria
that guarantees the posterior is a stationary distribution of the transition kernel. To
do this in practice, we choose a uniform random number on [0, 1] every iteration and
propose a swap when this random number is less than 1/ns. When we do propose a
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swap, we randomly pick a temperature β j from {β 1, β 2, . . . β m}. We then compute

r = min

(
1,

ghot(θ i,j | D,Mi, β j−1)

ghot(θ i,j−1 | D,Mi, β j−1)

ghot(θ i,j−1 | D,Mi, β j)

ghot(θ i,j | D,Mi, β j)

)
. (8.5)

Here, we have defined θ i,j as the value of parameter i for a walker at temperature
β j. Note that this calculation does not require calculation of any partition functions;
the Zi(β ) cancel out in the expression for r. We then draw another uniform random
number on [0, 1] and accept the swap is that number if less than r.

This useful technique is implemented the package ptemcee (pronouced tem-see;
the p is silent). Conveniently, it automatically chooses reasonable values of β and
swapping rate, though you can specify these as well. It also has a bit more sophisti-
cation that what I have described here, using adaptive parallel tempering.

8.2 Model selection with PTMCMC

We will now do some clever ticks to see how we can use PTMCMC to do model
comparison without making the approximations we have thus far. In fact, we do not
necessarily need parallel temperingwith swapping; we only need samples of ghot(θ i |
D,Mi, β ) for various values of β . Recall the statement of Bayes’s theorem for the
model comparison problem, equation (5.3).

g(Mi | D) =
f(D | Mi) g(Mi)

f(D)
. (8.6)

The likelihood in the model selection problem is given by the evidence, a.k.a. fully
marginalized likelihood, from the parameter estimation problem, as we derived in
equation (5.5). Thus,

g(Mi | D) =
g(Mi)

f(D)

[∫
dθ i g(θ i | Mi) f(D | θ i,Mi)

]
. (8.7)

We recognize the bracketed term as Zi(1). Our goal is to calculate this quantity.

Now, we’re going to do a usual trick in statistical mechanics: we will differentiate
the log of the partition function (analogous to the derivative of a free energy).

∂

∂ β lnZi(β ) = 1
Zi(β )

∂Zi

∂ β

=
1

Zi(β )

∫
dθ i

∂

∂ β exp [ln g(θ i | Mi) + β ln f(D | θ i,Mi)]

=
1

Zi(β )

∫
dθ i ln f(D | θ i,Mi) exp [ln g(θ i | Mi) + β ln f(D | θ i,Mi)]
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=
1

Zi(β )

∫
dθ i ln f(D | θ i,Mi) g(θ i | Mi) [f(D | θ i,Mi)]

β .

(8.8)

We recognize this as the average of the log likelihood ln f(D | θ i,Mi) over the dis-
tribution ghot(θ i | D,Mi, β ). We denote this as

∂

∂ β lnZi(β ) = ⟨ln f(D | θ i,Mi)⟩ghot(θ i|D,Mi,β ) . (8.9)

Note that this average if done for each specific value of β we are considering, and
that the derivative of the log partition function is thus a function of β . Now, we can
integrate both sizes of this equation to give∫ 1

0
dβ ∂

∂ β lnZi(β ) = lnZi(1)− lnZi(0) (8.10)

=

∫ 1

0
dβ ⟨ln f(D | θ i,Mi)⟩ghot(θ i|D,Mi,β ) .

Now, if the prior is normalized, as it should be,

Zi(0) =
∫

dθ i g(θ i | Mi) = 1, (8.11)

which means lnZi(0) = 0. Thus, we get a fully marginalized likelihood of

lnZi(1) =
∫

dθ i f(D | θ i,Mi) g(θ i | Mi) (8.12)

=

∫ 1

0
dβ ⟨ln f(D | θ i,Mi)⟩ghot(θ i|D,Mi,β ) .

Fortunately, if we have done PTMCMC, we have sampled out of the distribution
ghot(θ i | D,Mi, β ) for various values of β . We can then compute the integrand in
the above equation for each β at which we sampled.

⟨ln f(D | θ i,Mi)⟩ghot(θ i|D,Mi,β ) =
1

nsamples

∑
samples

ln f(D | θ i,Mi). (8.13)

We just have to compute the log likelihood (not the hot log-likelihood) for eachMCMC
sample for a given inverse temperature β , andwe have all we need. We then perform
numerical quadrature across the values of β that we sampled to get the integral. We
therefore can compute the odds ratio of two models Mi and Mj as

Oij =
g(Mi | I)
g(Mj | I)

Zi(1)
Zj(1)

(8.14)
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=
g(Mi | I)
g(Mj | I) exp

[∫ 1
0 dβ ⟨ln f(D | θ i,Mi)⟩ghot(θ i|D,Mi,β )∫ 1
0 dβ ⟨ln f(D | θ j,Mj)⟩ghot(θ i|D,Mi,β )

]
,

where the last ratio is computed via numerical quadrature on results computed di-
rectly from our PTMCMC traces using equation (8.13). Note that we have made
no approximations at all in the model. The calculation is only approximate to the
extent that the PTMCMC sampler takes a finite number of samples and numerical
quadrature is not exact.
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9 Hierarchical models

In this lecture, we will investigate hierarchical models, in which some model pa-
rameters are dependent on others in specific ways. This is best learned by example.

In homework problem 5.2, we studied reversals under exposure to blue light in
C. elegans with Channelrhodopsin in two different neurons. Let’s consider one of
the strains which contains a Channelrhodopsin in the ASH sensory neuron. The
experiment was performed three times by the students of Bi 1x. In 2015, we found
that 9 out of 35 worms reversed under exposure to blue light. In 2016, 12 out of 35
reversed. In 2017, 18 out of 54 reversed.

Considering for a moment only the 2015 experiment, we can use this measure-
ment to estimate the probability p of reversal. We modeled the likelihood of reversal
with aBinomial likelihood. Taking a uniformprior onp, we derived that the posterior
probability of reversal given r our of n trials showed reversals was

g(p | r, n) =


(n + 1)!
(n − r)!r! pr(1 − p)n−r 0 ≤ p ≤ 1

0 otherwise.
(9.1)

We did the experiment again in 2016, getting r = 12 and n = 35, and in 2017
with r = 18 and n = 54. Actually, we could imagine doing the experiment over
and over again, say k times, each time getting a value of r and n. Conditions may
change from experiment to experiment. For example, wemay have different lighting
set-ups, slight differences in the strain of worms we’re using, etc. We are left with
some choices on how to model the data.

9.1 Pooled data: identical parameters

We could pool all of the data together. In other words, let’s say we measure r1 out
of n1 reversals in the first set of experiments, r2 out of n2 reversals in the second set,
etc., up to k total experiments. We could pool all of the data together to get

r =
k∑

i=1

ri

out of n =
k∑

i=1

ni reversals. (9.2)

We then compute our posterior as in equation (9.1). Here, the assumption is that the
result in each experiment are governed by identical parameters. That is to say that we
assume p1 = p2 = · · · = pk = p.
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This is similar to what we did in section 1.9, in which we looked at how a single
hypothesis (or parameter value) is informed by more data.

9.2 Independent parameters

As an alternative, we could instead say that the parameters in each experiment are
totally independent of each other. In this case, we assume that p1, p2, . . ., pk are all
independent of each other. The likelihoods and priors all multiply and the posterior
probability is

g(p | r, n) =
k∏

i=1

(ni + 1)!
(ni − ri)!ri!

pri
i (1 − pi)

ni−ri , (9.3)

where p = {p1, p2, . . . pk}, with n and r similarly defined, and the posterior is un-
derstood to be zero if any the pi’s fall out of the interval [0, 1].

When we make this assumption, we often report a value of p that is given by the
mean of the pi’s with some error bar.

9.3 Best of both worlds: a hierarchical model

Each of these extremes have their advantages. We are often trying to estimate a pa-
rameter that is more universal than our experiments, e.g., something that describes
worms with Channelrhodopsin in the ASH neuron generally. So, pooling the exper-
imentsmakes sense. On the other hand, we have reason to assume that there is going
to be a different value of p in different experiments, as biological systems are highly
variable, not to mention measurement variations. So, how can we capture both of
these effects?

We can consider amodel in which there is a “master” reversal probability, which
we will call q, and the values of pi may vary from this q according to some probability
distribution, g(pi | q). So now, we have parameters p1, p2, . . . , pk and q. So, the
posterior can be written using Bayes’s theorem,

g(q, p | r, n) = f(r,n | q, p) g(q, p)
f(n, r) . (9.4)

Note, though, that the observed values of r do not depend directly on q, only on p.
In other words, the observations are only indirectly dependent on q. So, we can write
f(r, n | q, p) = f(r,n | p). Thus, we have

g(q, p | r, n) = f(r,n | p) g(q, p)
f(n, r) . (9.5)
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Next, we can rewrite the prior using the definition of conditional probability.

g(q, p) = g(p | q) g(q). (9.6)

Substituting this back into our expression for the posterior, we have

g(q, p | r, n) = f(r,n | p) g(p | q) g(q)
f(n, r) . (9.7)

Now, if we read off the numerator of this equation, we see a chain of dependencies.
The experimental results r depend on parameters p. Parameters p depend on hyper-
parameter q. Hyperparameter q then has some hyperprior distribution. Any model
that can bewritten as a chain of dependencies like this is called ahierarchicalmodel,
and the parameters that do not directly influence the data are called hyperparame-
ters.

So, the hierarchical model captures both the experiment-to-experiment variabil-
ity, as well as the master regulator of outcomes. Note that the product g(p | q) g(q)
comprises the prior, as it is independent of the observed data.

9.4 Exchangeability

The conditional probability, g(p | q), can take any reasonable form. In the case
where we have no reason to believe that we can distinguish any one pi from another
prior to the experiment, then the label “i” applied to the experiment may be ex-
changed with the label of any other experiment. I.e., g(p1, p2, . . . , pk | q) is in-
variant to permutations of the indices. Parameters behaving this way are said to be
exchangeable. A common (simple) exchangeable distribution is

g(p | q) =
k∏

i=1

g(pi | q), (9.8)

which means that each of the parameters is an independent sample out of a distribu-
tion g(pi | q), which we often take to be the same for all i. This is reasonable to do
in the worm reversal example.

9.5 Choice of the conditional distribution

Weneed to specify our prior, which for this hierarchical modelmeans that we have to
specify the conditional distribution, g(pi | q), as well as g(q) For the latter, we will
take it to be uniform on [0, 1]. This is equivalent to taking it to be a Beta distribution
with α = β = 1. The Beta distribution is a good choice in this case, as it is a
probability distribution of probabilities. For the conditional distribution g(pi | q),
we also assume it is Beta-distributed.
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The Beta distribution is typically written as

g(p | α , β ) = Γ (α + β )
Γ (α )Γ (β ) pα−1(1 − p)β−1, (9.9)

where it is parametrized by positive constants α and β . The Beta distribution has
mean and concentration, respectively, of

q =
α

α + β , (9.10)

κ = α + β . (9.11)

The concentration κ is a measure of how sharp the distribution is. The bigger κ is,
the most sharply peaked the distribution is.

Because the Beta distribution has two parameters, we cannot just parametrize
the model with q. We would have to use q and κ or alternatively α and β . So, our
expression for the posterior is

g(α , β , p | r,n) =
f(r, n | p) g(α , β )

∏k
i=1 g(pi | α , β )

f(n, r) . (9.12)

Alternatively, we could parametrize the model in terms of q and κ , giving

g(q, κ , p | r,n) =
f(r, n | p) g(q, κ )

∏k
i=1 g(pi | q, κ )

f(n, r) . (9.13)

Note that if we do choose to parametrize ourmodel with q and κ , we can convert
back to α and β using

α = qκ (9.14)

β = (1 − q)κ . (9.15)

9.6 Choice of prior

As already stated, the likelihood is Binomial, with

f(r,n | p) =
k∏

i=1

f(ri, ni | pi) =
k∏

i=1

ni!

ri!(ni − ri)!
pri

i (1 − pi)
ni−ri , (9.16)

and g(pi | α , β ) is Beta distributed, with

g(pi | α , β ) = Γ (α + β )
Γ (α )Γ (β ) pα−1

i (1 − pi)
β−1. (9.17)
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We are now left to specify the hyperprior, g(α , β ). We might choose to specify the
prior in terms of q and κ , since these seem at face to bemore intuitive. We can take a
Uniformprior forq and a Jeffreys prior for κ , aswe often do. That is, g(q, κ ) ∝ 1/κ .
Applying the change of variables formula, we have

g(α , β ) ∝

∣∣∣∣∣
∂q
∂ α

∂q
∂ β

∂ κ
∂ α

∂ κ
∂ β

∣∣∣∣∣ 1
α + β =

∣∣∣∣∣
β

(α+β )2 − α
(α+β )2

1 1

∣∣∣∣∣ 1
α + β =

1
(α + β )2 .

(9.18)

So, a uniform prior for q and a Jeffreys prior for κ results in a uniform prior in α and
β , defined on α , β ∈ (0, inf). If we use this Uniform prior, we have

g(α , β , p | r,n) ∝ 1
(α + β )2

k∏
i=1

Γ (α + β )
Γ (α )Γ (β ) pα−1

i (1 − pi)
β−1 pri

i (1 − pi)
ni−ri

∝ 1
(α + β )2

k∏
i=1

Γ (α + β )
Γ (α )Γ (β ) pri+α−1

i (1 − pi)
ni−ri+β−1.

(9.19)

We can integrate the right hand side over p1, p2, . . . to get the marginalized poste-
rior for the hyperparameters α and β . We can do the integral by inspection, noting
that pri+α−1

i (1 − pi)
ni−ri+β−1 is the same functional form of an unnormalized Beta

distribution, so we must have∫ 1

0
dpi pri+α−1

i (1 − pi)
ni−ri+β−1 =

Γ (ri + α )Γ (ni − ri + β )
Γ (ni + α + β ) . (9.20)

So, the unnormalized marginalized posterior is

g(α , β | r, n) ∝ 1
(α + β )2

k∏
i=1

Γ (α + β )
Γ (α )Γ (β )

Γ (ri + α )Γ (ni − ri + β )
Γ (ni + α + β ) .

(9.21)

There is a problem with this posterior: it is improper. That is to say that it is unnor-
malizable. This can be seen by using the reciprocal relation for gamma functions,
xΓ (x) = Γ (x + 1) to re-write the marginalized posterior.

g(α , β | r, n) ∝ 1
(α + β )2

k∏
i=1

(∏ri−1
m=0(α + m)

)(∏ni−ri−1
m=0 (β + m)

)
∏n−1

m=0(α + β + m)

=
1

(α + β )2

k∏
i=1

O(α ri)O(β ni−ri)

O ((α + β )ni)
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=
1

(α + β )2

k∏
i=1

O
((

α
α + β

)ri)
O

((
β

α + β

)ni−ri
)
.

(9.22)

Since we have q = α/(α + β ) = (1+ β/α )−1 and must lie between zero and one,
we can consider a limit of large α and β with the ratio α/β fixed at some constant,
finite value. Then, for large α and β , the product term in the expression for the
unnormalized marginal posterior is constant. Therefore, the integral∫ ∞

0
dα
∫ ∞

0
dβ g(α , β | r, n) (9.23)

diverges because the integral over (α + β )−2 diverges. This gives an improper pos-
terior, which is not acceptable.

It turns out that this problem occurs generally in hierarchical models. The vari-
ance of a Beta distribution is approximately proportional to κ−1, especially at large
α and β . By choosing a Jeffreys prior for the variance, we are choosing a Uniform
prior for the log of the variance. When we do this with hierarchical models, that is
choose a Uniform prior for the log of the variance of a hyperprior for exchangeable
parameters, we get an improper posterior.

So, it is often tricky to be truly uninformative with your hyperpriors. For the
present example, we will instead choose a Uniform prior in the standard deviation,
so that κ−1/2 has a Uniform prior; g(q, κ−1/2) = constant. If we do this, we have

g(α , β ) ∝

∣∣∣∣∣
∂q
∂ α

∂q
∂ β

∂
√

κ
∂ α

∂
√

κ
∂ β

∣∣∣∣∣ =
∣∣∣∣∣

β
(α+β )2 − α

(α+β )2

− 1
2(α+β )3/2 − 1

2(α+β )3/2

∣∣∣∣∣ ∝ 1
(α + β )5/2 . (9.24)

With this prior, we have an unnormalized posterior of

g(α , β , p | r,n) ∝ 1
(α + β )5/2

k∏
i=1

Γ (α + β )
Γ (α )Γ (β ) pri+α−1

i (1 − pi)
ni−ri+β−1.

(9.25)

This is a proper posterior, which you can prove with similar arguments as we made
to show that the first posterior we considered was improper.

9.7 Implementation

In some cases, we can do some gnarly integration and work out analytical results for
the posterior of a hierarchical model. This usually involves choosing conjugate pri-
ors. Most often, though, we need to resort to numerical methods, MCMC as usual
being the most powerful. To see the worm reversal problem solved with a hierarchi-
cal model, see the implementation here.
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9.8 Generalization

Theworm reversal problem is easily generalized. You can imagine havingmore levels
of the hierarchy. This is justmore steps in the chain of dependencies that are factored
in the prior. For general parameters θ and hyperparameters ϕ , we have

g(θ , ϕ | D) =
f(D | θ ) g(θ | ϕ )P(ϕ )

f(D)
(9.26)

for a two-level hierarchical model. For a three-level hierarchical model, we can con-
sider hyperparameters ξ that depend on ϕ , giving

g(θ , ϕ , ξ | D) =
f(D | θ ) g(θ | ϕ ) g(ϕ | ξ ) g(ξ )

f(D)
, (9.27)

and so on for four, five, etc., level hierarchical models. Aswe have seen in the course,
the work is all in coming up with the models for the likelihood f(D | θ ), and prior,
g(θ | ϕ ) g(ϕ ), in this case for a two-level hierarchical model. For coming up with
the conditional portion of the prior, g(θ | ϕ ), we often assume a Gaussian distri-
bution because this often describes experiment-to-experiment variability. (The Beta
distribution we used in our example is approximately Gaussian and has the conve-
nient feature that it is defined on the interval [0, 1].) Bayes’s theorem gives you the
posterior, and it is then “just” a matter of computing it by sampling from it.
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