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1 Probability and the logic of science

We start with a question. What is the goal of doing (biological) experiments?
There are many answers you may have for this. Some examples:

• To further knowledge.

• To test a hypothesis.

• To explore and observe.

• To demonstrate. E.g., to demonstrate feasibility.

More obnoxious answers are

• To graduate.

• Because your PI said so.

• To get data.

This question might be better addressed if we zoom out a bit and think about
the scientific process as a whole. In Fig. 1, we have a sketch of the scientific pro-
cesses. This cycle repeats itself as we explore nature and learn more. In the boxes
are milestones, and along the arrows in orange text are the tasks that get us to these
milestones.
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Figure 1: A sketch of the scientific process. Adapted fromFig. 1.1 of P. Gregory,
Bayesian Logical Data Analysis for the Physical Sciences, Cambridge, 2005.

Let’s consider the tasks and their milestones. We start in the lower left.
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• Hypothesis invention/refinement. In this stage of the scientific process, the re-
searcher(s) think about nature, all that they have learned, including from their
experiments, and formulate hypotheses or theories they can pursue with ex-
periments. This step requires innovation, and sometimes genius (e.g., general
relativity).

• Deductive inference. Given the hypothesis, the researchers deduce what must
be true if the hypothesis is true. You have done a lot of this in your studies
to this point, e.g., given X and Y, derive Z. Logically, this requires a series of
strong syllogisms:

If A is true, then B is true.
A is true.
Therefore B is true.

The result of deductive inference is a set of (preferably quantitative) predic-
tions that can be tested experimentally.

• Do experiment. This requireswork, and also its own kind of innovation. Specif-
ically, you need to think carefully about how to construct your experiment to
test the hypothesis. It also usually requires money. The result of doing exper-
iments is data.

• Statistical (plausible) inference. This step is perhaps the least familiar to you,
but this is the step that this course is all about. I will talk about what statistical
inference is next; it’s too involved for this bullet point.

1.1 What is statistical inference?

As we designed our experiment under our hypothesis, we used deductive logic to
say, “If A is true, then B is true,” where A is our hypothesis and B is an experimental
observation. This was deductive inference.

Now, let’s say we observe B. Does this make A true? Not necessarily. But it does
make A more plausible. This is called a weak syllogism. As an example, consider the
following hypothesis/observation pair.

A = Wastewater injection after hydraulic fracturing, known as fracking,
can lead to greater occurrence of earthquakes.

B = The frequency of earthquakes in Oklahoma has increased 100 fold
since 2010, when fracking became common practice there.

Because B was observed, A is more plausible.

So, we collected observations (we can call observations “data”) to help us learn
something about what generated the observations. That is, we are interested in the
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effect fracking has on earthquakes, and we collected information about earthquakes
to try to infer the effects of fracking.

Because the connection between our observations and the process generating
them is a weak syllogism, we cannot say anything with absolute certainty about the
generative process. So, we need a way to quantify the uncertainty. Probability serves
this role.

So, statistical inference requires a probability theory. Thus, probability the-
ory is a generalization of logic. Due to this logical connection and its crucial role in
science, E. T. Jaynes says that probability is the “logic of science.”

1.2 The definition of probability

I will be a little formal1 for a moment here as we construct this mathematical notion
of probability. First, we need to define the world of possibilities. We denote by Ω a
sample space, which is the set of all outcomes we could observe in a given exper-
iment. We define an event A to be a subset of Ω (A ⊆ Ω ). Two events, Ai and
Aj are disjoint, also called mutually exclusive, if Ai ∩ Aj = ∅. That is to say that
two events are disjoint if they do not overlap at all in the sample space; they do not
share any outcomes. So, in common terms, the sample space Ω contains all possible
outcomes of an experiment. An event A is a given outcome or set of outcomes. Two
events are disjoint if they are totally different from each other.

We define the probability of event A to be P(A), where P is a probability func-
tion. It maps the event A to a real number between zero and one. In order to be a
probability, the function P must satisfy the following axioms.

1) The probability must be nonnegative; P(A) ≥ 0 for all A.

2) The probability that an event was drawn from the entire sample space is one;
P(Ω) = 1.

3) The probability of the empty set is zero; P(∅) = 0. Along with the previous
axiom and the requirement that P(A) range from zero to one, this essentially
says that only events in the sample space are allowable outcomes.

4) If A1,A2, . . . are disjoint events, then

P
(∪

i

Ai

)
=
∑

i

P(Ai). (1.1)

This means that probability is additive. The probability of observing an event
in the union of disjoint events is the sum of the probabilities of those events.

1But not too formal. For example, we are not discussing σ algebras, measurability, etc.
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Putting together these axioms, we see that probability consists of positive real num-
bers that are distributed among the events of a sample space. The sum total of these
real numbers over all of the sample space is one. So, a probability function and a
sample space go hand-in-hand.

1.3 Interpretations of probability

Before we go on to talk more about probability, it will help to be thinking about how
we can apply it to understand measured data. To do that, we need to think about
how probability is interpreted. Note that these are interpretations of probability, not
definitions. We have already defined probability, and both of the two dominant in-
terpretations below are valid.

Frequentist probability. In the frequentist interpretation of probability, the prob-
ability P(A) represents a long-run frequency over a large number of identical repeti-
tions of an experiment. These repetitions can be, and often are, hypothetical. The
event A is restricted to propositions about random variables, a quantity that can very
meaningfully from experiment to experiment.2 So in the frequentist view, we are
using probability to understand how the results of an experiment might vary from
repetition to repetition.

Bayesian probability. Here, P(A) is interpreted to directly represent the degree of
belief, or plausibility, aboutA. So, A can be any logical proposition, not just a random
variable.

Youmayhaveheard about a split, or even afight, betweenpeoplewhouseBayesian
and frequentist interpretations of probability applied to statistical inference. There
is no need for a fight. The twoways of approaching statistical inference differ in their
interpretation of probability, the tool we use to quantify uncertainty. Both are valid.

In my opinion, the Bayesian interpretation of probability is more intuitive to ap-
ply to scientific inference. It always starts with a simple probabilistic expression and
proceeds to quantify plausibility. It is conceptually cleaner to me, since we can talk
about plausibility of anything, including parameter values. In other words, Bayesian
probability serves to quantify our own knowledge, or degree of certainty, about a
hypothesis or parameter value. Conversely, in frequentist statistical inference, the
parameter values are fixed (they are not random variables; they cannot vary mean-
ingfully from experiment to experiment), and we can only study how repeated exper-
iments will convert the real parameter value to an observation.

2More formally, a random variable transforms the possible outcomes of an experiment to real
numbers.
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We will use some frequentist approaches in class, especially when we study non-
parametric methods, but we will generally focus on Bayesian analysis.

1.4 The sum rule, the product rule, and conditional probability

The sum rule, which may be derived from the axioms defining probability, says that
the probability of all events must add to unity. Let Ac be all events except A, called
the complement of A. Then, the sum rule states that

P(A) + P(Ac) = 1. (1.2)

Now, let’s say that we are interested in event A happening given that event B
happened. So, A is conditional on B. We denote this conditional probability as
P(A | B). Given this notion of conditional probability, we can write the sum rule as

(sum rule) P(A | B) + P(Ac | B) = 1, (1.3)

for any B.

The product rule states that

P(A,B) = P(A | B)P(B), (1.4)

where P(A,B) is the probability of both A and B happening. (It could be written
as P(A ∩ B).) The product rule is also referred to as the definition of conditional
probability. It can similarly be expanded as we did with the sum rule.

(product rule) P(A,B | C) = P(A | B,C)P(B | C), (1.5)

for any C.

1.5 Application to scientific measurement

This is all a bit abstract. Let’s bring it into the realm of scientific experiment. We’ll
assign meanings to these things we have been calling A and B.

A = hypothesis (or parameter value), θ , (1.6)

B = Measured data set, y. (1.7)

So, we may be interested in the probability of obtaining a data set y given some set of
parameters θ . In other words, we want to learn about P(y | θ ).

To go a bit further, let’s rewrite the product rule using our data set y and param-
eter θ .

P(y, θ ) = P(θ | y)P(y). (1.8)
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Ahoy! The quantity P(θ | y) is exactly what we want from our statistical inference.
This describes probability for values of a parameter, given measurements.

But wait a minute. The parameter θ is not something that can varymeaningfully
fromexperiment to experiment; it is not a randomvariable. So, in the frequentist pic-
ture, we cannot assign a probability to it. That is, P(θ | y) and P(y, θ ) do not make
any sense. So, in the frequentist perspective, we can really only analyze P(y | θ ).

Nonetheless, we proceed assuming we take a Bayesian interpretation of proba-
bility and discuss how we might get a useful expression for P(θ | y).

1.6 Bayes’s Theorem

Note that because “and” is commutative, P(y, θ ) = P(θ , y). We apply the product
rule to both sides of this seemingly trivial equality.

P(θ | y)P(y) = P(θ , y) = P(y, θ ) = P(y | θ )P(θ ). (1.9)

If we take the terms at the beginning and end of this equality and rearrange, we get

(Bayes’s theorem) P(θ | y) = P(y | θ )P(θ )
P(y) . (1.10)

This result is called Bayes’s theorem. This is far more instructive in terms of how
to compute our goal, which is the left hand side.

Do not be confused. Bayes’s theorem is a statement about probability and holds
whether you interpret probability in a Bayesian or frequentist manner. The name
“Bayesian” does not mean that it applies only to probability interpreted through the
Bayesian lens. We just chose to have θ take a meaning of a parameter value in the
above example, but Bayes’s theorem holds in general for any events that can be as-
signed a probability.

The quantities on the right hand side of Bayes’s theorem all have meaning. We
will talk about the meaning of each term in turn, and this is easier to do using their
names; each item in Bayes’s theorem has a name.

posterior =
likelihood× prior

evidence
. (1.11)

The prior probability. First, consider the prior, P(θ ). As probability is a mea-
sure of plausibility, or how believable a hypothesis is. This represents the plausibil-
ity about hypothesis or parameter set θ given everything we know before we did the
experiment to get the data.
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The likelihood. The likelihood, P(y | θ ), describes how likely it is to acquire the
observed data, given the hypothesis or parameter value θ . It also contains information
about what we expect from the data, given our measurement method. Is there noise
in the instruments we are using? How do we model that noise? These are contained
in the likelihood.

The evidence. I will not talk much about this here, except to say that it can be
computed from the likelihood and prior, and is also called the marginal likelihood, a
name whose meaning will become clear in the next section.3

The posterior probability. This is what we are after. How plausible is the hypoth-
esis or parameter value, given that we have measured some data? It is calculated di-
rectly from the likelihood and prior (since the evidence is also computed from them).
Computing the posterior distribution constitutes the bulk of our inference tasks in
this course.

1.7 Marginalization

A moment ago, I mentioned that the evidence can be computed from the likelihood
and the prior. To see this, we apply the sum rule to the posterior probability. Let θ i
be a particular possible value of a parameter or hypothesis. Then,

1 = P(θ j | y) + P(θ c
j | y)

= P(θ j | y) +
∑
i ̸=j

P(θ i | y)

=
∑

i

P(θ i | y). (1.12)

Now, Bayes’s theorem gives us an expression for P(θ i | y), so we can compute the
sum. ∑

i

P(θ i | y) =
∑

i

P(y | θ i)P(θ i)

P(y)

=
1

P(y)
∑

i

P(y | θ i)P(θ i)

= 1. (1.13)

3I have heard this referred to as the “fullymarginalized likelihood” because of the cute correspon-
dence of the acronym and how some people feel trying to get their head around the meaning of the
quantity.
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Therefore, we can compute the evidence by summing over the priors and likelihoods
of all possible hypotheses or parameter values.

P(y) =
∑

i

P(y | θ i)P(θ i). (1.14)

Using the definition of conditional probability, we also have

P(y) =
∑

i

P(y, θ i) (1.15)

This process of eliminating a variable (in this case the hypotheses θ i) in the joint
distribution by summing is calledmarginalization. This will prove useful in finding
the probability distribution of a single parameter among many, as you will show in
your homework.

1.8 Probability distributions

So far we have talked about probability of events, andwe have inmindmeasurements
and, in the Bayesian case, parameter values as the events. We have a bit of a problem,
though, if the sample space consists of real numbers, which we often encounter in
our experiments and modeling. The probability of getting a single real value is iden-
tically zero. This is my motivation for introducing probability distributions, but
the concept is more general and has much more utility than just dealing with sample
spaces containing real numbers. Importantly, probability distributions provide the
link between outcomes in the sample space to probability. Probability distributions
describe both discrete quantities (like integers) and continuous quantities (like real
numbers).

Thoughwe cannot assign a nonzero the probability for an outcome from a sample
space containing all of the real numbers, we can assign a probability that the outcome
is less than some real number. Notationally, we write this as

P(having outcome that is ≤ y) = F(y). (1.16)

The function F(y), which returns a probability, is called a cumulative distribution
function (CDF), or just distribution function. It contains all of the information we
need to know about how probability is assigned to y. A CDF for a Gaussian distribu-
tion (which we will discuss in coming weeks) is shown in Fig. 2a.

Related to the CDF for a continuous quantity is the probability density func-
tion, or PDF. The PDF is given by the derivative of the CDF,

f(y) = dF(y)
dy . (1.17)
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Figure 2: a) The cumulative distribution function for a Gaussian distribution
that could describe, for example, the heights of men in centimeters in a given
country. b) The corresponding probability distribution function.

Note that f(y) is not the probability of outcome y. Rather, the probability that of
outcome y lying between y0 and y1 is

P(y0 ≤ y ≤ y1) = F(y1)− F(y0) =

∫ y1

y0

dy f(y). (1.18)

Conversely, for a discrete quantity, we have a probability mass function, or
PMF,

f(x) = P(x). (1.19)

The PMF is a probability, unlike the PDF. An example of a CDF and a PMF for a
discrete distribution are shown in Fig. 3. In this example, n is the outcome of the roll
of a fair die (n ∈ {1, 2, 3, 4, 5, 6}).
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Figure 3: a) The cumulative distribution function for the outcome of a fair dice
roll. b) The corresponding probability mass function.
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1.9 Joint and conditional distributions and Bayes’s theorem for PDFs

We have defined a PDF as f(x), that is, describing a single variable x. We can have
joint distributions with a PDF f(x, y). The joint CDF is not well-defined, so we
restrict our discussions of CDFs to the univariate case.

We may also have conditional distributions that have PDF f(x | y). This is
interpreted similarly to conditional probabilities we have already seen. f(x | y) is
the probability density function for x, given y. As similar relation between joint and
conditional PDFs holds as in the case of joint and conditional probabilities.

f(x | y) = f(x, y)
f(y) . (1.20)

That this holds is not at all obvious. One immediate issues is that we are conditioning
on an event y that has zero probability. We will not carefully derive why this holds,
but state it without proof.

As a consequence, Bayes’s theorem also holds for PDFs, as it does for probabili-
ties.4

f(θ | y) = f(y | θ ) f(θ )
f(y) . (1.21)

Notationally in this course, we will use f to describe a PDF or PMF of a random
variable. andg to describe thePMForPDFof a parameter or other logical conjecture
that is not measured data or a random variable. For example, f(y) is the PDF for
a continuous measured quantity and g(θ ) is the PDF for a parameter value. So,
Bayes’s theorem is

g(θ | y) = f(y | θ ) g(θ )
f(y) . (1.22)

Finally, we can marginalize probability distribution functions to get marginal-
ized PDFs.

f(x) =
∫

dy f(x, y) =
∫

dy f(x | y) f(y). (1.23)

In the case of a discrete distribution, we can compute marginal a marginal PMF.

f(x) =
∑

i

f(x, yi) =
∑

i

f(x | yi) f(yi). (1.24)

4This is very subtle. Jayne’s book, Probability: The Logic of Science, Cambridge University Press,
2003, for more one these subtleties.
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1.10 Statistical modeling

As scientists, we often have inmind a generative process by which the data wemea-
sure are produced. For example, we might expect the optical density of a solution of
E. coli in LB media to grow exponentially over time, with some small measurement
error. To model this, we specify a probability distribution to describe the measure-
ments. We can then use the data and statistical inference to learn something about
the parameters in the model.

You may have noticed the terms “cartoon model,” “mathematical model,” and
“statistical model” in Fig. 1. Being biologists who are doing data analysis, the word
“model” is used to mean three different things in our work. So, for the purposes
of this course, we need to clearly define what we are talking about when we use the
word “model.”

Cartoon model. These models are the typical cartoons we see in text books or in
discussion sections of biological papers. They are a sketch of what we thinkmight be
happening in a system of interest, but they do not provide quantifiable predictions.

Mathematical model. These models give quantifiable predictions that must be
true if the hypothesis (which is sketched as a cartoon model) is true. In many cases,
getting to predictions from a hypothesis is easy. For example, if I hypothesize that
protein A binds protein B, a quantifiable prediction would be that they are colocal-
ized when I image them. However, sometimes harder work and deeper thought is
needed to generate quantitative predictions. This often requires “mathematizing”
the cartoon. This is how amathematical model is derived from a cartoonmodel. Of-
tentimes when biological physicists refer to a “model,” they are talking about what
we are calling a mathematical model. In the bacterial growth example, the mathe-
matical model is that they grow exponentially.

Statistical model. A statistical model goes a step beyond the mathematical model
and uses a probability distribution to describe any measurement error, or stochastic
noise in the system being measured. This essentially means specifying f(y | θ ) (and
g(θ ) in the Bayesian case). The statistical models we will use are generative in that
the encompass the cartoon andmathematicalmodels and any noise to use probability
to describe how the data are generated.
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