
BE/Bi 103: Data Analysis in the
Biological Sciences

Justin Bois

Caltech

Fall, 2018

This document was prepared at Caltech with financial support from the Donna and Benjamin M.
Rosen Bioengineering Center.

© 2018 Justin Bois.
This work is licensed under a Creative Commons Attribution License CC-BY 4.0.

https://creativecommons.org/licenses/by/4.0/


5 Introduction to Bayesian modeling

In the first lecture and in the homework problem on Bayes’s theorem as a model
for learning, we learned about Bayes’s theorem as a way to update a hypothesis in
light of new data. We use the word “hypothesis” very loosely here. Remember, in
the Bayesian view, probability can describe the plausibility of any proposition. The
value of a parameter is such a proposition. In this lecture, we will learn about the
Bayesian approach to parameter estimation. This stands in contrast to what we have
been doing with frequentist methods when we have been using the plug-in principle
to get estimates about expectation values (or, more generally, statistical functionals)
from a generative distribution by approximating it using an empirical distribution.

We will approach this problem by example, starting with a very simple problem,
estimating the parameter in a one-parameter model.

5.1 Bayes’s theorem as applied to simple parameter estimation

Wewill consider one of the simplest examples of parameter estimation. Let’s say we
measure a parameter Ȇ in multiple independent experiments. This could be beak
depths of finches, fluorescence intensity in a cell, a dissociation constant for two
bound proteins, etc. The possibilities abound. To have a concrete example in mind
for this example, let’s assume we are measuring the length of C. elegans eggs.

Our measurements of this parameter are Z ≡ {Z�, Z�, . . . ZO}. Our “hypothesis”
in this case, is the value of the parameter Ȇ . We wish to calculate H(Ȇ | Z), the
posterior probability distribution for the parameter Ȇ , given the data. Values of Ȇ
for which the posterior probability is high are more probable (that is, more plausible)
than those for which is it low. The posterior H(Ȇ | Z) codifies our knowledge about
Ȇ in light of our data Z.

To compute the posterior probability, we use Bayes’s theorem.

H(Ȇ | Z) = G(Z | Ȇ ) H(Ȇ )
G(Z) . (5.1)

Since the evidence G(Z) does not depend on the parameter of interest, Ȇ , it is really
just a normalization constant, so we do not need to consider it explicitly. Specifica-
tion of the likelihood and prior is sufficient for the posterior, since

G(Z) =
∫

dȆ G(Z | Ȇ ) H(Ȇ ) (5.2)

to ensure normalization of the posterior H(Ȇ | Z). So, we have just to specify the
likelihood G(Z | Ȇ ) and the prior H(Ȇ ).
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Specification of the likelihood/prior pair is what statistical modeling is all about.
We begin with the likelihood.

5.2 The likelihood

To specify the likelihood, we have to ask what we expect from the data, given a value
of Ȇ . If there are no errors or confounding factors at all in our measurements, we
expect ZJ = Ȇ for all J. In this case

H(Z | Ȇ ) =
O∏

J=�
Ȃ (ZJ − Ȇ ), (5.3)

the product of Dirac delta functions. Of course, this is really never the case. There
will be some errors in measurement and/or the system has variables that confound
the measurement. What, then should we choose for our likelihood?

That choice is of course dependent the story/theoretical modeling behind data
generation. For our purposes here, we shall assume our data are generated from a
Gaussian likelihood. Since this distribution gets heavy use, I will pause here to talk
a bit more about it.

5.3 The Gaussian distribution

A univariate Gaussian, or Normal, probability distribution has a probability density
function (PDF) of

G(Z | Ȋ , ȑ ) = �√
�Ȏ ȑ �

exp
[
−(Z − Ȋ )�

�ȑ �

]
. (5.4)

The parameter Ȋ is called the mean of the distribution and ȑ � is called the variance,
with ȑ being called the standard deviation. Importantly, the mean and standard de-
viation in this context are names of parameters of the distribution; they are not what
you compute directly from data.

The central limit theorem says that any quantity that emerges from a large num-
ber of subprocesses tends to be Gaussian distributed, provided none of the subpro-
cesses is very broadly distributed. We will not prove this important theorem, but we
make use of it when choosing likelihood distributions based on the stories behind
the generative process. Indeed, in the simple case of estimating a single parameter
where many processes may contribute to noise in the measurement, the Gaussian
distribution is a good choice for a likelihood.
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More generally, themulti-dimensionalGaussian distribution for Z = (Z�, Z�, · · · , ZO)
is

G(Z | Ȋ , ȑ ) = (�Ȏ)− O
� (det ȟ )−

�
� exp

[
−�

�(Z − Ȋ )5 · ȟ−� · (Z − Ȋ )

]
,

(5.5)

where Ȋ = {Ȋ �, Ȋ �, . . . , Ȋ O} is an array of means (again, here “mean” is the name
of the parameter of the Gaussian, not of the mean of a measurement, which does not
even make sense here, since ZJ is a single measurement). The parameter ȟ is a sym-
metric positive definite matrix called the covariance matrix. If off-diagonal entry
ȟ JK is nonzero, then ZJ and ZK are correlated. In the case where all ZJ are independent,
all off-diagonal terms in the covariance matrix are zero, and the multidimensional
Gaussian distribution reduces to

G(Z | Ȋ , ȑ ) =
O∏

J=�

�√
�Ȏ ȑ �

J
exp

[
−(ZJ − Ȋ J)

�

�ȑ �
J

]
, (5.6)

where ȑ �
J is the Jth entry along the diagonal of the covariance matrix. This is the

variance associated with measurement J. So, if all independent measurements have
the same variance andmean, which is to say that themeasurements are independent
and identically distributed (i.i.d.), the multi-dimensional Gaussian reduces to

G(Z | Ȋ , ȑ ) =
( �

�Ȏ ȑ �

)− O
�
exp

[
− �

�ȑ �

O∑

J=�
(ZJ − Ȋ )�

]
. (5.7)

5.4 The likelihood revisited: and another parameter

For the purposes of this demonstration of parameter estimation, we assume the
Gaussian distribution is a good choice for our likelihood for repeatedmeasurements.
We have to decide how the measurements are related to specify howmany entries in
the covariance matrix we need to specify as parameters. It is often the case that the
measurements are i.i.d, so that only a single mean and variance are specified. So, we
choose our likelihood to be

G(Z | Ȋ , ȑ ) =
( �

�Ȏ ȑ �

) O
�
exp

[
− �

�ȑ �

O∑

J=�
(YJ − Ȋ )�

]
. (5.8)

By choosing this as our likelihood, we are saying that we expect our measurements
to have a well-defined mean Ȋ with a spread described by the variance, ȑ �.

But wait a minute; we had a single parameter, Ȇ , that we sought to estimate, and
now we now have another parameter, ȑ , beyond the one we’re trying to measure
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(which we are now calling Ȋ ). So, our statistical model has two parameters, and
Bayes’s theorem now reads

H(Ȋ , ȑ | Z) = G(Z | Ȋ , ȑ ) H(Ȋ , ȑ )
G(Z) . (5.9)

Afterwe compute the posterior, we can still find the posterior probability distribution
we are after by marginalizing.

H(Ȋ | Z) =
∫

dȑ H(Ȋ , ȑ | Z). (5.10)

5.5 Choice of prior

Now that we have defined a likelihood, we knowwhat the parameters are and we can
define a prior, H(Ȋ , ȑ ). As is often the case, we assume Ȋ and ȑ are independent of
each other, so that

H(Ȋ , ȑ ) = H(Ȋ ) H(ȑ ). (5.11)

How might we choose prior distributions for Ȋ and ȑ? Remember, the prior prob-
ability distribution captures what we know about the parameter before we measure
data. I often like to sketch how I think the probability density function of a parameter
will look and then find a named distribution that looks like that. Generally, I think it
is wise to choose a weakly informative prior. I think the idea is well-described in
the Stan wiki on priors, which say, “the [weakly informative] prior rules out unrea-
sonable parameter values but is not so strong as to rule out values that might make
sense.” In other words, you want to draw your prior distribution broad enough such
that it covers all parameter values that are even somewhat reasonable, but rules out
absurd parameter values.

For the current contrived example of C. elegans eggs, we can guess that the egg
length should be about 50 µm, but we are not to sure about this. So, we take H(Ȋ ) to
be Gaussian with a mean of 50 µm, but a variance of 20 µm. That is,

H(Ȋ ) = �√
�Ȏ ȑ �

Ȋ

exp

[
−
(Ȋ − Ȋ Ȋ )

�

�ȑ �
Ȋ

]
, (5.12)

with Ȋ Ȋ = �� µm and ȑ Ȋ = �� µm. This means that getting a very tiny egg length
of, say, 10 µm is unlikely, as is a very large egg of 90 µm.

For H(ȑ ), we might think that the egg length may vary about five or ten microns,
but not much more than that. We could again choose a Gaussian prior, with

H(ȑ ) = �√
�Ȏ ȑ �

ȑ
exp

[
−(Ȋ − Ȋ ȑ )

�

�ȑ �
ȑ

]
, (5.13)
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with Ȋ ȑ = � µm and ȑ ȑ = � µm.

The exact functional form of the prior is not so important. In this case, we have
the obvious issue that there is nonzero probability that Ȋ or ȑ could be negative,
which we know is unphysical. We could refine our prior distribution to make sure
this does not happen. With any approach we choose, the prior should roughly match
what we would sketch on a piece of paper and cover any reasonable parameter values
and exclude any that are unreasonable (or unphysical).

5.6 Succinctly stating the model

Our model is complete, which means that we have now completely specified the
posterior. We can write it out.

H(Ȋ , ȑ | Z) = �
G(Z)

{( �
�Ȏ ȑ �

) O
�
exp

[
− �

�ȑ �

O∑

J=�
(YJ − Ȋ )�

]

× �√
�Ȏ���

exp
[
−(Ȋ − ��)�

� · ���

]

× �√
�Ȏ��

exp
[
−(Ȋ − �)�

� · ��

] }
, (5.14)

with

G(Z) =
∫

dȊ
∫

dȑ {term in braces in the above equation}. (5.15)

Ohmy, this is amess, even for this simplemodel! Even thoughwe have the posterior,
it is very hard to make sense of it. Essentially the rest of the course involved making
sense of the posterior, which is the challenge. It turns out that writing it down was
relatively easy!

One of the first things we can do to make sense of our model, and also to specify
it, is to use a shorthand for model specification. First of all, we do not need to specify
the evidence, since it is always given by integrating the likelihood and prior; that is
by fully marginalizing the likelihood. So, we will always omit its specification. Now,
we would like to have a notation for stating the likelihood and prior. English works
well.

The parameter Ȋ is Gaussian distributedwithmean 50 µmand standard
deviation 20 µm.

The parameter ȑ is Gaussian distributed with mean 5 µm and standard
deviation 2 µm.
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The egg lengths are i.i.d. and are Gaussian distributed withmean Ȋ and
standard deviation ȑ .

This is much easier to understand. We can write this with a convenient, and self
evident, shorthand.7

Ȋ ∼ Norm(��, ��), (5.16)

ȑ ∼ Norm(�, �), (5.17)

ZJ ∼ Norm(Ȋ , ȑ ) ∀J. (5.18)

Here, the symbol ∼ may be read as “is distributed as.” The above three lines are
completely sufficient to specify our model. Because we will be using a probabilistic
programming language in practice, we will almost never need to code up any nasty
mathematical expressions in our modeling.

5.7 A Bayesian workflow

In coming tutorials, we will learn numerical techniques for gaining useful informa-
tion, usually expectations and marginalized distributions (which are a kind of expec-
tation) from the posterior. The most powerful technique is Markov chain Monte
Carlo (MCMC), which we will do extensively using Stan. But before you start com-
puting expectations of the posterior you shouldmake sure that your generativemodel
can produce data sets thatmake sense and that it accurately captures your prior belief
about the generative process. This procedure is known as prior predictive check-
ing. Once you are pleased with that, you should check to make sure that the numer-
ical techniques (usually MCMC) you use to compute the expectations can provide
reliable results. You should also check that the addition of your data changes the
posterior beyond what was already known from the prior. When all of those checks
are in place, you can proceed to compute expectations from the posterior, which is
the process we ofter refer to as parameter estimation.

Wewill learn how to do prior predictive checks in the tutorials next week, and we
will jump into summarizing the posterior right after that. Throughout the next few
weeks, we will discuss techniques to ensure that your inferences are sound. For a
more detailed discussion on a principled Bayesian workflow, I encourage you to read
Michael Betancourt’s excellent blog post on the topic.

7I understand that I should be providing units on all parameters that I am specifyingwith numbers.
I am not doing this here, nor throughout the course, to avoid notational clutter and to maintain focus
on the modeling.
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