
BE/Bi 103: Data Analysis in the
Biological Sciences

Justin Bois

Caltech

Fall, 2018

This document was prepared at Caltech with financial support from the Donna and Benjamin M.
Rosen Bioengineering Center.

© 2018 Justin Bois.
This work is licensed under a Creative Commons Attribution License CC-BY 4.0.

https://creativecommons.org/licenses/by/4.0/


7 Hierarchical models

In this lecture, we will investigate hierarchical models, in which some model pa-
rameters are dependent on others in specific ways. This is best learned by example.

In homework problem 6.1, we studied reversals under exposure to blue light inC.
elegans with Channelrhodopsin in two different neurons. Let’s consider one of the
strains which contains a Channelrhodopsin in the ASH sensory neuron. We consid-
ered data done in three different years by the students of Bi 1x. In 2015, we found
that 9 out of 35 worms reversed under exposure to blue light. In 2016, 12 out of 35
reversed. In 2017, 18 out of 54 reversed.

7.1 Analytical expression for the posterior

This is one of the few examples where we can write an analytical expression for the
posterior. We will do so because it will make discussion about hierarchical models
simpler.

Consider for a moment only a single experiment, we can use this measurement
to estimate the probability Ȇ of reversal. In the homework, youmodeled the number
of reversals with a Binomial distribution and the probability of reversal Ȇ with a Beta
distribution.

Ȇ ∼ Beta(ǿ , Ȁ ), (7.1)

O ∼ Binom(/, Ȇ ), (7.2)

where O is the number of reversals and Ȇ is the probability of reversal upon exposure
to blue light. This parameter Ȇ is what we wish to estimate.

We can write out this model in full detail using Bayes’s theorem.11

H(Ȇ | O,/) =
G(O | /, Ȇ ) H(Ȇ )

G(O | /)
, (7.3)

where

G(O | /, Ȇ ) = /!

(/ − O)!O! Ȇ O(� − Ȇ )/−O, (7.4)

and

H(Ȇ ) = �
#(ǿ , Ȁ ) Ȇ ǿ−�(� − Ȇ )Ȁ−�, (7.5)

11Note that I wrote H(Ȇ ) instead of H(Ȇ | /) because they are equal; / has no bearing on Ȇ .
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where #(ǿ , Ȁ ) = ɓ (ǿ )ɓ (Ȁ )/ɓ (ǿ + Ȁ ) is the Beta function. Putting this all
together enables us to write an expression for the posterior.

H(Ȇ | O,/) =
�

G(O | /)#(ǿ , Ȁ )
/!

(/ − O)!O!
[

Ȇ O+ǿ−�(� − Ȇ )/−O+Ȁ−�
]
.

(7.6)

Looking at this expression, the bracketed expression is the only bit that depends
on Ȇ . This is exactly the Ȇ -dependence of a Beta distribution with parameters O+ ǿ
and / − O + Ȁ . Because the posterior must be normalized, the posterior therefore
must be a Beta distribution and

�
G(O | /)#(ǿ , Ȁ )

/!

(/ − O)!O! =
�

#(O + ǿ ,/ − O + Ȁ ) . (7.7)

We have just normalized the posterior without doing any nasty integrals! So, the
posterior is

H(Ȇ | O,/) =
Ȇ O+ǿ−�(� − Ȇ )/−O+Ȁ−�

#(O + ǿ ,/ − O + Ȁ ) , (7.8)

or,

Ȇ | O,/ ∼ Beta(O + ǿ ,/ − O + Ȁ ). (7.9)

It is clear that the data have updated the parameters of the Beta prior.

For a given likelihood, a prior that is the same distribution as the posterior (obvi-
ously with different parameters) is said to be conjugate to the likelihood. So, we can
see that conjugacy is useful. For a given likelihood, if we know its conjugate prior, we
can just immediately write down the posterior in a clear form. The Wikipedia page
on conjugate priors has a useful table of likelihood-conjugate pairs.

Note though that a closed form conjugate does not always exist for a given likeli-
hood, especially for complicated models, and when they do exist, they may be very
difficult to find. This does limit their utility. Further, there is no reason why a poste-
rior and prior should have the same functional form; all analysis is completely valid
without conjugacy.

7.2 Ways to model repeated experiments

We have the posterior for a single experiment. But, we did the experiment in 2015,
getting O// = �/��, and again in 2016, getting O// = ��/��, and in 2017 with
O// = ��/��. Actually, we could imagine doing the experiment over and over
again, say L times, each time getting a value of O and /. Conditions may change
from experiment to experiment. For example, we may have different lighting set-
ups, slight differences in the strain of worms we’re using, etc. We are left with some
choices on how to model the data.
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7.2.1 Pooled data: identical parameters

We could pool all of the data together. In other words, let’s say wemeasure O� out of
/� reversals in the first set of experiments, O� out of /� reversals in the second set,
etc., up to L total experiments. We could pool all of the data together to get

O =
L∑

J=�
OJ out of

L∑

J=�
/J reversals. (7.10)

We then compute our posterior as in equation (7.8). Here, the modeling assumption
is that the result in each experiment are governed by identical parameters. That is to
say that we assume Ȇ � = Ȇ � = · · · = Ȇ L = Ȇ .

This is similar to what we did in homework problem 2.3, in which showed how
a single hypothesis (or parameter value) is informed by more data. And this is the
modeling approach we took in homework problem 6.1.

7.2.2 Independent parameters

As an alternativemodel, we could instead say that the parameters in each experiment
are totally independent of each other. In this case, we assume that Ȇ �, Ȇ �, . . ., Ȇ L
are all independent of each other. The likelihoods and priors all multiply and the
posterior probability is

Ȇ J ∼ Beta(O + ǿ ,/ − O + Ȁ ) for all J. (7.11)

When we make this assumption, we often report a value of Ȇ that is given by the
mean of the Ȇ J’s with some error bar.

7.3 Best of both worlds: a hierarchical model

Each of these extremes have their advantages. We are often trying to estimate a pa-
rameter that is more universal than our experiments, e.g., something that describes
worms with Channelrhodopsin in the ASH neuron generally. So, pooling the exper-
imentsmakes sense. On the other hand, we have reason to assume that there is going
to be a different value of Ȇ in different experiments, as biological systems are highly
variable, not to mention measurement variations. So, how can we capture both of
these effects?

We can consider amodel in which there is a “master” reversal probability, which
we will call Ƞ , and the values of Ȇ J may vary from this Ƞ according to some prob-
ability distribution, H(Ȇ J | Ƞ ). So now, we have parameters Ȇ �, Ȇ �, . . . , Ȇ L and Ƞ .
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So, the posterior can be written using Bayes’s theorem, defining Ȇ = (Ȇ �, Ȇ �, . . .),
/ = (/�,/�, . . .), and O = (O�, O�, . . .),

H(Ƞ , Ȇ | O,/) =
G(O,/ | Ƞ , Ȇ ) H(Ƞ , Ȇ )

G(O,/)
. (7.12)

Note, though, that the observed values of O do not depend directly on Ƞ , only on
Ȇ . In other words, the observations are only indirectly dependent on Ƞ . So, we can
write G(O,/ | Ƞ , Ȇ ) = G(O,/ | Ȇ ). Thus, we have

H(Ƞ , Ȇ | O,/) =
G(O,/ | Ȇ ) H(Ƞ , Ȇ )

G(O,/)
. (7.13)

Next, we can rewrite the prior using the definition of conditional probability.

H(Ƞ , Ȇ ) = H(Ȇ | Ƞ ) H(Ƞ ). (7.14)

Substituting this back into our expression for the posterior, we have

H(Ƞ , Ȇ | O,/) =
G(O,/ | Ȇ ) H(Ȇ | Ƞ ) H(Ƞ )

G(O,/)
. (7.15)

Now, if we read off the numerator of this equation, we see a chain of dependencies.
The experimental results O depend on parameters Ȇ . Parameters Ȇ depend on hy-
perparameter Ƞ . Hyperparameter Ƞ then has some hyperprior distribution. Any
model that can be written as a chain of dependencies like this is called a hierarchical
model, and the parameters that do not directly influence the data are called hyper-
parameters.

So, the hierarchical model captures both the experiment-to-experiment variabil-
ity, aswell as themaster regulator of outcomes. Note that the productH(Ȇ | Ƞ ) H(Ƞ )
comprises the prior, as it is independent of the observed data.

7.4 Exchangeability

The conditional probability, H(Ȇ | Ƞ ), can take any reasonable form. In the case
where we have no reason to believe that we can distinguish any one Ȇ J from another
prior to the experiment, then the label “J” applied to the experiment may be ex-
changed with the label of any other experiment. I.e., H(Ȇ �, Ȇ �, . . . , Ȇ L | Ƞ ) is in-
variant to permutations of the indices. Parameters behaving this way are said to be
exchangeable. A common (simple) exchangeable distribution is

H(Ȇ | Ƞ ) =
L∏

J=�
H(Ȇ J | Ƞ ), (7.16)

which means that each of the parameters is an independent sample out of a distribu-
tion H(Ȇ J | Ƞ ), which we often take to be the same for all J. This is reasonable to do
in the worm reversal example.
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7.5 Choice of the conditional distribution

We need to specify our prior, which for this hierarchical model means that we have
to specify the conditional distribution, H(Ȇ J | Ƞ ), as well as H(Ƞ ). We could assume
a Beta prior for Ƞ ; the one you used in your homework for the reversal probability
would be a good choice. For the conditional distribution H(Ȇ J | Ƞ ), we might as-
sume it is Beta-distributed. This necessitates another parameter because the Beta
distribution has two parameters.

The Beta distribution is typically written as

H(Ȇ | ǿ , Ȁ ) = ɓ (ǿ + Ȁ )
ɓ (ǿ )ɓ (Ȁ ) Ȇ ǿ−�(� − Ȇ )Ȁ−�, (7.17)

where it is parametrized by positive constants ǿ and Ȁ . The Beta distribution has
mean and concentration, respectively, of

Ƞ =
ǿ

ǿ + Ȁ , (7.18)

Ȉ = ǿ + Ȁ . (7.19)

The concentration Ȉ is a measure of how sharp the distribution is. The bigger Ȉ is,
the most sharply peaked the distribution is.

Since we would like to parametrize our Beta distribution with its mean Ƞ , we
could use Ȉ as our other parameter. So, our expression for the posterior is

H(Ȇ , Ƞ , Ȉ | O,/) =
G(O,/ | Ȇ )

(∏L
J=� H(Ȇ J | Ƞ , Ȉ )

)
H(Ƞ , Ȉ )

G(O,/)
. (7.20)

We are left to specify the hyperprior H(Ƞ , Ȉ ). We will take Ƞ to come from
a Beta distribution and Ȉ to come from an weakly informative Half-Normal. Note
that to switch from a parametrization using Ƞ and Ȉ to one using ǿ and Ȁ , we can
use

ǿ = Ƞ Ȉ (7.21)

Ȁ = (� − Ƞ )Ȉ . (7.22)

With all of this, we can now put together our model.

Ƞ ∼ Beta(�, �), (7.23)

Ȉ ∼ HalfNorm(�, ��), (7.24)

ǿ = Ƞ Ȉ , (7.25)
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Ȁ = (� − Ƞ )Ȉ , (7.26)

Ȇ J ∼ Beta(ǿ , Ȁ ) ∀J, (7.27)

OJ ∼ Binom(/J, Ȇ J) ∀J. (7.28)

7.6 Implementation

The lore has it that the original motivation for Stan’s development was to enable
effective sampling of hierarchical models (naive samplers often fail spectacularly at
hierarchical models). To see the worm reversal problem solved with a hierarchical
model, see the implementation here, wherein Stan shreds.

7.7 Generalization

Theworm reversal problem is easily generalized. You can imagine havingmore levels
of the hierarchy. This is justmore steps in the chain of dependencies that are factored
in the prior. For general parameters Ȇ and hyperparameters Ƞ , we have, for data set
Z,

H(Ȇ , Ƞ | Z) = G(Z | Ȇ ) H(Ȇ | Ƞ ) H(Ƞ )

G(Z) (7.29)

for a two-level hierarchical model. For a three-level hierarchical model, we can con-
sider hyperparameters Ȍ that depend on Ƞ , giving

H(Ȇ , Ƞ , Ȍ | Z) = G(Z | Ȇ ) H(Ȇ | Ƞ ) H(Ƞ | Ȍ ) H(Ȍ )
G(Z) , (7.30)

and so on for four, five, etc., level hierarchical models. Aswe have seen in the course,
the work is all in coming up with the models for the likelihood G(Z | Ȇ ), and prior,
H(Ȇ | Ƞ ) H(Ƞ ), in this case for a two-level hierarchical model. For coming up with
the conditional portion of the prior, H(Ȇ | Ƞ ), we often assume a Gaussian distri-
bution because this often describes experiment-to-experiment variability. (The Beta
distribution we used in our example is approximately Gaussian and has the conve-
nient feature that it is defined on the interval [�, �].) Bayes’s theorem gives you the
posterior, and it is then “just” a matter of computing it by sampling from it. In com-
ing tutorials, we will use Stan to sample out of hierarchical models and discuss the
difficulties involved with doing that.
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