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8 Model comparison

We have spent a lot of time in the past couple of weeks looking at the problem of
parameter estimation. Really, we have been stepping through the process of bringing
our thinking about a biological system into a concrete generative statisticalmodel that
defines a likelihood for the data and the parametrization thereof. The specification
of the model defines the set of parameters Ȇ we need to estimate. For a data set Z,
we wrote down Bayes’s theorem as

H(Ȇ | Z) = G(Z | Ȇ ) H(Ȇ )
G(Z) . (8.1)

Implicit in all of this is an underlying model, .. In this lecture, we will investigate
assessment of the model ., so we will explicitly include it in the models;

H(Ȇ . | Z,.) =
G(Z | Ȇ .,.) H(Ȇ . | .)

G(Z | .)
. (8.2)

Note that I have subscripted the Ȇ ’s with an . to denote that the parameters are
connected with a specific model .. This notation can be cumbersome (with lots of
.’s floating around), so we can alternatively, without ambiguity, write

H.(Ȇ | Z) = G.(Z | Ȇ ) H.(Ȇ )
G.(Z)

. (8.3)

Here, the subscript . denotes that we are working with model ..

8.1 Metrics for model assessment

Our goal in model assessment is to see how close our model is to the true unknown
generative process. To determine a metric to this closeness, we need to make a few
definitions and be a bit formal for amoment. We define GU(Z̃) to be the true probability
density function for generating a data set Z̃. We have observed data set Z, and we
would like to see howwell we can predict data set Z̃. Assumingwe know the posterior
H.(Ȇ | Z) (which we can formally write down using Bayes’s theorem, (8.3)), we can
define the posterior predictive distribution by

G.(Z̃ | Z) =
∫

dȆ G.(Z̃ | Ȇ ) H.(Ȇ | Z). (8.4)

Take a moment to digest what this equation says. The posterior predictive distri-
bution describes the kind of data sets we would expect the generative model . to
produce after we have done our statistical inference informed by the measured data
Z.

Our goal in model assessment is to find out how close G.(Z̃ | Z) is to GU(Z̃). That
is, we ask howwell our generativemodel can generate new data compared to the true
generative process.
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8.2 Posterior predictive checks

Even though we do not know what the true distribution is, you actually sampled out
of it by doing the experiment! You got only one sample, Z, but it is still a sample
out of the true distribution. You can also sample out of G.(Z̃ | Z) if you have done
MCMC sampling out of the posterior H.(Ȇ | Z). To do so, use each sample of Ȇ
out of the posterior to condition your likelihood to draw a new data set Z̃. So, you
now have one sample from the true distribution and one from themodel, and you can
compare the samples. This procedure constitutes a posterior predictive check.

While prior predictive checks are used to see if your generative model produces
data sets withing the realm of possibility (and does not produce them outside the
realm of possibility), a posterior predictive check considers how reasonable it is that
the observed data came from your generative model. The output of the posterior
predictive check is usually a plot of the samples out of G.(Z̃ | Z) overlaid with the
actual data set Z. If there is good overlap, the posterior predictive check suggests
that your model is close to the true generative process.

8.3 Closeness metrics

While posterior predictive checks are very useful and powerful formodel assessment,
it is useful to be able to quantify how close G.(Z̃ | Z) is to GU(Z̃).

8.3.1 Entropy and the Kullback-Leibler divergence

In order to answer this question, we need a definition for “closeness” of two prob-
ability distributions. To get this definition, we need to turn to notions about infor-
mation. Formally, information is the reduction in ignorance derived from learning
an outcome. It might be easier to think about ignorance instead.

Say event J happens with probability QJ. If J is very probable andwe observe it, we
haven’t learned much. For example, if we observe that the current pope is Catholic,
we haven’t learned much about popes. That is, we are still pretty ignorant about
popes. But if J is very improbable and we observe it, we have learned a lot. If we
observe a pig flying, we have learned something new about nature.

To codify this inmathematical terms, wemight think that the information gained
by observing event J should scale like �/QJ, since more rare events give higher infor-
mation.

Now, say we observe two independent events, J and K. Since they are totally in-
dependent, the information garnered from observing both should be the sum of the
information garnered from observing each. We know that the probability of observ-
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ing both is �/QJQK. But

�
QJ

+
�
QK

̸= �
QJQK

. (8.5)

So, our current metric of information does not satisfy this addibility requirement.
However,

log
�
QJ

+ log
�
QK

= log
�

QJQK
. (8.6)

So, we choose log(�/QJ) = − log QJ as a measure of information. We are free to
choose the base of the logarithm, and it is traditional to choose base 2. The units of
information are then called bits. We, however, will use natural logarithms for conve-
nience.

Now, saw we have an ensemble of events. Then the average information we get
from observing a events (i.e., the level of surprise) is

)[Q] = −
∑

J
QJ ln QJ. (8.7)

This is called the Shannon entropy or informational entropy. It has its name be-
cause of its relation to the same quantity in statistical thermodynamics. We will not
delve into that in this course.

Let’s look at the Shannon entropy another way. Say we know all of the QJ’s. How
much knowledge do we know about what events wemight observe? If the probability
distribution is flat, not much. Conversely, if it is sharply peaked, we know a lot about
what event we will observe. In the latter case, observing an event does not give us
more information beyond what we already knew from the probabilities. So, )[Q] is a
measure of ignorance. It tells us how uncertain or unbiased we are ahead of an obser-
vation. This will be crucial for defining how much we learn through observation.

I pause to note thatwe shortcutted ourway into this definition of entropy by using
some logic and the desire that independent events add. A more careful derivation
was done in 1948 by Claude Shannon. He showed that the function we wrote for
the entropy is the only function that satisfies three desiderata about measurements
of ignorance.

1. Entropy is continuous in QJ.

2. If all QJ are equal, entropy is monotonic in O, the number of event we could
observe.

3. Entropy satisfies a composition law; grouping of events does not change the
value of entropy.
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The derivation is beautiful, but we will not go into it here.

We can extend this notion of entropy to define cross entropy,)[Q, R]. This is the
amount of information (or loss of ignorance) needed to identify an event J described
by probability QJ when we use some other probability RJ. In other words, it tells us
howmuch ignorance we have in using R to describe events governed by Q. The cross
entropy is

)[Q, R] = −
∑

J
QJ ln RJ. (8.8)

We may think about how close Q and R are. The additional entropy induced by
using R instead of Q is )[Q, R] − )[Q]. We can use this as a measure of closeness
of R to Q. This is called the Kullback-Leibler divergence, also known as the KL
divergence,

%KL(Q∥R) = )[Q, R]− )[Q] =
∑

J
QJ ln

QJ
RJ
. (8.9)

So, if we want to use the KL divergence as a metric for how close the posterior
predictive distribution G(Z̃ | Z,.) is to the true distribution GU(Z̃), we can write12

%KL(GU∥G.) =

∫
dZ̃ GU(Z̃) ln

GU(Z̃)
G.(Z̃)

. (8.10)

8.3.2 The expected log pointwise predictive density

In practice, wewant to compare two ormoremodels. In otherwords, wewish to know
if model A is closer than model B to the true distribution. So, wemight be interested
in the difference in the KL-divergences of two proposed models.

%KL(GU∥G.B)− %KL(GU∥G.C) =

∫
dZ̃ GU(Z̃) ln

GU(Z̃)
G.B(Z̃ | Z) −

∫
dZ̃ GU(Z̃) ln

GU(Z̃)
G.C(Z̃ | Z)

=

∫
dZ̃ GU(Z̃) ln

G.C(Z̃ | Z)
G.B(Z̃ | Z)

=

∫
dZ̃ GU(Z̃) ln G.C(Z̃ | Z)−

∫
dZ̃ GU(Z̃) ln G.B(Z̃ | Z),

(8.11)

12I am playing a little fast and loose here converting sums to integrals. There are some subtleties
involved therein, but we will not delve into those here.
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where we did the awkward splitting of a logarithm so it looks like we are taking loga-
rithms of quantities with units.13 This tells us that the quantity we need to calculate
for any model . we wish to assess is

∫
dZ̃ GU(Z̃) ln G.(Z̃ | Z). (8.12)

Now, imagine that we have / independent measurements of data points. That
is, Z = (Z�, Z�, . . . Z/), with each ZJ being independent of the others. Thus,

G.(Z̃ | Z) =
/∏

J=�
G.(Z̃J | Z). (8.13)

We do not know for sure that the data points in the true model are independent, but
we will assume they are, i.e., that

GU(Z̃) =
/∏

J=�
GU(Z̃J). (8.14)

Now, if we were to generate a new set of / data points, Z̃, with the assumption of
independence of the Z̃J, then our expression becomes

∫
dZ̃ GU(Z̃) ln G.(Z̃ | Z) =

∫
dZ̃ GU(Z̃) ln

/∏

J=�
G.(Z̃J | Z)

=

∫
dZ̃
[ /∏

J=�
GU(Z̃J)

] /∑

J=�
ln G.(Z̃J | Z)

=
/∑

J=�

∫
dZ̃J GU(Z̃J) ln G.(Z̃J | Z). (8.15)

This expression is called the expected log pointwise predictive density, or elpd
(sometimes elppd),

elpd =
/∑

J=�

∫
dZ̃J GU(Z̃J) ln G.(Z̃J | Z). (8.16)

It took a while, but this, the elpd, is the quantity we need to determine to compare
models. As a reminder, comparing the elpd of two different models gives their rel-
ative closeness (as defined by the KL divergence) to the true distribution.14 While

13Taking logarithms of quantities with units bothers me immensely. Going forward, imagine there
is an invisible “�units-of-Z” multiplying the G.(Z̃ | Z)’s.

14Note that this is not the only metric we could use to compare models, but it is the most widely
used one and is intuitively convenient due to its relationship to the Kullback-Leibler divergence.
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we would like to compute elpd, we cannot, because GU(Z̃) is not known. All we have
is a single data set sampled from it (the one we got by doing the experiment). We
therefore seen to find ways to approximately compute elpd.

8.4 The Watanabe-Akaike information criterion

The first approximation of the elpd we will consider is the Watanabe-Akaike in-
formation criterion, also known as the widely applicable information criterion, or
WAIC. To compute the WAIC, we first approximate the elpd by the log pointwise
predictive density, or lpd (sometimes called lppd),

lpd = ln G.(Z | Z) =
/∑

J=�
ln G.(ZJ | Z). (8.17)

To understand this, compare it to the elpd. Each summand in the elpd is the loga-
rithm of the posterior predictive density averaged over the true distribution. In the
lpd, we are computing the same thing, but are in essence using a plug-in principle,
where we only assign nonzero probability to data points that were actually measured.
The lpdwill overestimate the elpd because the averaging over the true distribution in
the elpd necessarily lowers the value of the summand. To attempt to correct for this
discrepancy, another term, Qwaic is subtracted from lpd to give theWAIC estimate of
elpd.

elpdwaic = lpd− Qwaic. (8.18)

I will not go into the derivation here (see the paper by Vehtari, Gelman, and Gabry
and references therein), but Qwaic is given by the summed variances of the log likeli-
hood of the observations ZJ.

Qwaic =
/∑

J=�
variance(ln G.(ZJ | Z)), (8.19)

where the variance is computed over the posterior. Written out, this is

variance(ln G.(ZJ | Ȇ )) =
∫

dȆ H.(Ȇ | Z) (ln G.(ZJ | Z))�

−
(∫

dȆ H(Ȇ . | Z) ln G.(ZJ | Z)
)�

. (8.20)

This is kind of a mess, and its form is better understood if you go through the deriva-
tion. Importantly, though, both lpd and Qwaic can be computed using samples from
the parameter estimation problem, further underscoring the incredible advantage
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that having samples gives. Given a set of 4 MCMC samples of the parameters Ȇ
(where Ȇ (T) is the Tth sample), the lpd may be calculated as

lpd =
/∑

J=�
ln

(
�
4

4∑

T=�
G.(ZJ | Ȇ (T))

)
. (8.21)

This is another beautiful example of how sampling converts integrals into sums. Sim-
ilarly we can compute Qwaic from samples.

Qwaic =
/∑

J=�

�
4 − �

4∑

T=�

(
log G.(ZJ | Ȇ (T))− R(ZJ)

)�
, (8.22)

where

R(ZJ) =
�
4

4∑

T=�
ln G.(ZJ | Ȇ (T)). (8.23)

For historical reasons, the value of the WAIC is reported as

WAIC = −� elpdwaic = −�(lpd− Qwaic). (8.24)

TheArviZpackage offers a function2�$� to compute theWAICdirectly fromMCMC
samples. This functionality is also wrapped in the � �$ͮͭͰmodule.

8.5 Leave-one-out estimates of elpd

Leave-one-out cross validation (LOO) is a techniquewidely used inmachine learn-
ing to test how well a machine can predict new data. The technique is simple; one
data point is held out of a set of data, and the learning algorithm uses the remaining
/ − � data points to learn. The ability of the machine to predict the value of the
omitted data point is used to assess its performance.

The idea behind LOO applied in Bayesian model comparison is similar. The Jth
data point is omitted from the data set, and we obtain a posterior predictive density
from it. Formally, let Z−J be the data set with the Jth data point, ZJ, removed. Then
the LOO posterior predictive density is

G.(ZJ | Z−J) =

∫
dȆ G.(ZJ | Ȇ ) H.(Ȇ | Z−J). (8.25)

We can then get the approximate elpd as

elpdloo =
/∑

J=�
ln G.(ZJ | Z−J). (8.26)
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The pleasant feature of the LOO approximation of elpd is that the posterior distri-
bution was computed from a smaller data set (smaller by one datum) and then the
ability to predict is assessed against a data point that was not used in computing the
posterior and was actually drawn from the true distribution (by experiment).

In principle, the LOO estimate for the elpd could be directly computed by per-
forming/ differenceMCMCsampling calculations, one for each omitted data point,
and then summing logarithms of posterior predictive samples. For large /, this can
be very computationally expensive. Fortunately, there are good ways to estimate
elpdloo directly fromMCMC samples. I will note go into the details here, but impor-
tantly the methods use Pareto-smoothed importance sampling to get numerically
stable estimates for the elpd. You can read about the methods in the Vehtari, Gel-
man, and Gabry paper. They are also implemented in the '** function of the ArviZ
pacakge.

Again for historical reasons, the LOO is not reported as the elpd estimate, but as

LOO = −� elpdloo. (8.27)

I have called this quantity LOO for lack of a better term and also because this is what
ArviZ calls it when reporting its value. It can be shown that this quantity and the
WAIC are asymptotically equal with large /. However, the LOO estimate for the
elpd tends to be better than that of the WAIC, in fact much better for smaller data
sets. LOO is therefore preferred.

8.6 The Akaike weights

Remember, the value of a WAIC or LOO by itself does not tell us anything. Only
comparison of two or more of these criteria makes sense. Recalling that the elpd
is a logarithm of a probability density, so if we exponentiate it, we get something
proportional to a probability. If we have two models, .J and .K, theAkaike weight
of model J is

XJ =
exp

[
−�

� LOOJ
]

exp
[
−�

� LOOJ
]
+ exp

[
−�

� LOOK
] , (8.28)

where WAIC may be substituted for LOO as you wish. In this comparison of two
models, the weight of model J is related to the difference of Kullback-Leibler diver-
gences between the true distribution and the respective models.

XJ ≈
exp

[
%KL(GU∥G.K)− %KL(GU∥G.J)

]

� + exp
[
%KL(GU∥G.K)− %KL(GU∥G.J)

] . (8.29)

A common, but not agreed upon, interpretation is that the Akaike weight is an esti-
mate of the probability that .J will make the best predictions of new data.
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Finally, we can generalize the Akaike weights to multiple models.

XJ =
exp

[
−�

� LOOJ
]

∑
K exp

[
−�

� LOOK
] . (8.30)
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