"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/javascript": [
"\n",
"(function(root) {\n",
" function now() {\n",
" return new Date();\n",
" }\n",
"\n",
" var force = true;\n",
"\n",
" if (typeof root._bokeh_onload_callbacks === \"undefined\" || force === true) {\n",
" root._bokeh_onload_callbacks = [];\n",
" root._bokeh_is_loading = undefined;\n",
" }\n",
"\n",
" var JS_MIME_TYPE = 'application/javascript';\n",
" var HTML_MIME_TYPE = 'text/html';\n",
" var EXEC_MIME_TYPE = 'application/vnd.bokehjs_exec.v0+json';\n",
" var CLASS_NAME = 'output_bokeh rendered_html';\n",
"\n",
" /**\n",
" * Render data to the DOM node\n",
" */\n",
" function render(props, node) {\n",
" var script = document.createElement(\"script\");\n",
" node.appendChild(script);\n",
" }\n",
"\n",
" /**\n",
" * Handle when an output is cleared or removed\n",
" */\n",
" function handleClearOutput(event, handle) {\n",
" var cell = handle.cell;\n",
"\n",
" var id = cell.output_area._bokeh_element_id;\n",
" var server_id = cell.output_area._bokeh_server_id;\n",
" // Clean up Bokeh references\n",
" if (id != null && id in Bokeh.index) {\n",
" Bokeh.index[id].model.document.clear();\n",
" delete Bokeh.index[id];\n",
" }\n",
"\n",
" if (server_id !== undefined) {\n",
" // Clean up Bokeh references\n",
" var cmd = \"from bokeh.io.state import curstate; print(curstate().uuid_to_server['\" + server_id + \"'].get_sessions()[0].document.roots[0]._id)\";\n",
" cell.notebook.kernel.execute(cmd, {\n",
" iopub: {\n",
" output: function(msg) {\n",
" var id = msg.content.text.trim();\n",
" if (id in Bokeh.index) {\n",
" Bokeh.index[id].model.document.clear();\n",
" delete Bokeh.index[id];\n",
" }\n",
" }\n",
" }\n",
" });\n",
" // Destroy server and session\n",
" var cmd = \"import bokeh.io.notebook as ion; ion.destroy_server('\" + server_id + \"')\";\n",
" cell.notebook.kernel.execute(cmd);\n",
" }\n",
" }\n",
"\n",
" /**\n",
" * Handle when a new output is added\n",
" */\n",
" function handleAddOutput(event, handle) {\n",
" var output_area = handle.output_area;\n",
" var output = handle.output;\n",
"\n",
" // limit handleAddOutput to display_data with EXEC_MIME_TYPE content only\n",
" if ((output.output_type != \"display_data\") || (!output.data.hasOwnProperty(EXEC_MIME_TYPE))) {\n",
" return\n",
" }\n",
"\n",
" var toinsert = output_area.element.find(\".\" + CLASS_NAME.split(' ')[0]);\n",
"\n",
" if (output.metadata[EXEC_MIME_TYPE][\"id\"] !== undefined) {\n",
" toinsert[toinsert.length - 1].firstChild.textContent = output.data[JS_MIME_TYPE];\n",
" // store reference to embed id on output_area\n",
" output_area._bokeh_element_id = output.metadata[EXEC_MIME_TYPE][\"id\"];\n",
" }\n",
" if (output.metadata[EXEC_MIME_TYPE][\"server_id\"] !== undefined) {\n",
" var bk_div = document.createElement(\"div\");\n",
" bk_div.innerHTML = output.data[HTML_MIME_TYPE];\n",
" var script_attrs = bk_div.children[0].attributes;\n",
" for (var i = 0; i < script_attrs.length; i++) {\n",
" toinsert[toinsert.length - 1].firstChild.setAttribute(script_attrs[i].name, script_attrs[i].value);\n",
" }\n",
" // store reference to server id on output_area\n",
" output_area._bokeh_server_id = output.metadata[EXEC_MIME_TYPE][\"server_id\"];\n",
" }\n",
" }\n",
"\n",
" function register_renderer(events, OutputArea) {\n",
"\n",
" function append_mime(data, metadata, element) {\n",
" // create a DOM node to render to\n",
" var toinsert = this.create_output_subarea(\n",
" metadata,\n",
" CLASS_NAME,\n",
" EXEC_MIME_TYPE\n",
" );\n",
" this.keyboard_manager.register_events(toinsert);\n",
" // Render to node\n",
" var props = {data: data, metadata: metadata[EXEC_MIME_TYPE]};\n",
" render(props, toinsert[toinsert.length - 1]);\n",
" element.append(toinsert);\n",
" return toinsert\n",
" }\n",
"\n",
" /* Handle when an output is cleared or removed */\n",
" events.on('clear_output.CodeCell', handleClearOutput);\n",
" events.on('delete.Cell', handleClearOutput);\n",
"\n",
" /* Handle when a new output is added */\n",
" events.on('output_added.OutputArea', handleAddOutput);\n",
"\n",
" /**\n",
" * Register the mime type and append_mime function with output_area\n",
" */\n",
" OutputArea.prototype.register_mime_type(EXEC_MIME_TYPE, append_mime, {\n",
" /* Is output safe? */\n",
" safe: true,\n",
" /* Index of renderer in `output_area.display_order` */\n",
" index: 0\n",
" });\n",
" }\n",
"\n",
" // register the mime type if in Jupyter Notebook environment and previously unregistered\n",
" if (root.Jupyter !== undefined) {\n",
" var events = require('base/js/events');\n",
" var OutputArea = require('notebook/js/outputarea').OutputArea;\n",
"\n",
" if (OutputArea.prototype.mime_types().indexOf(EXEC_MIME_TYPE) == -1) {\n",
" register_renderer(events, OutputArea);\n",
" }\n",
" }\n",
"\n",
" \n",
" if (typeof (root._bokeh_timeout) === \"undefined\" || force === true) {\n",
" root._bokeh_timeout = Date.now() + 5000;\n",
" root._bokeh_failed_load = false;\n",
" }\n",
"\n",
" var NB_LOAD_WARNING = {'data': {'text/html':\n",
" \"
\\n\"+\n",
" \"
\\n\"+\n",
" \"BokehJS does not appear to have successfully loaded. If loading BokehJS from CDN, this \\n\"+\n",
" \"may be due to a slow or bad network connection. Possible fixes:\\n\"+\n",
" \"
\\n\"+\n",
" \"
\\n\"+\n",
" \"
re-rerun `output_notebook()` to attempt to load from CDN again, or
\"}};\n",
"\n",
" function display_loaded() {\n",
" var el = document.getElementById(\"1001\");\n",
" if (el != null) {\n",
" el.textContent = \"BokehJS is loading...\";\n",
" }\n",
" if (root.Bokeh !== undefined) {\n",
" if (el != null) {\n",
" el.textContent = \"BokehJS \" + root.Bokeh.version + \" successfully loaded.\";\n",
" }\n",
" } else if (Date.now() < root._bokeh_timeout) {\n",
" setTimeout(display_loaded, 100)\n",
" }\n",
" }\n",
"\n",
"\n",
" function run_callbacks() {\n",
" try {\n",
" root._bokeh_onload_callbacks.forEach(function(callback) {\n",
" if (callback != null)\n",
" callback();\n",
" });\n",
" } finally {\n",
" delete root._bokeh_onload_callbacks\n",
" }\n",
" console.debug(\"Bokeh: all callbacks have finished\");\n",
" }\n",
"\n",
" function load_libs(css_urls, js_urls, callback) {\n",
" if (css_urls == null) css_urls = [];\n",
" if (js_urls == null) js_urls = [];\n",
"\n",
" root._bokeh_onload_callbacks.push(callback);\n",
" if (root._bokeh_is_loading > 0) {\n",
" console.debug(\"Bokeh: BokehJS is being loaded, scheduling callback at\", now());\n",
" return null;\n",
" }\n",
" if (js_urls == null || js_urls.length === 0) {\n",
" run_callbacks();\n",
" return null;\n",
" }\n",
" console.debug(\"Bokeh: BokehJS not loaded, scheduling load and callback at\", now());\n",
" root._bokeh_is_loading = css_urls.length + js_urls.length;\n",
"\n",
" function on_load() {\n",
" root._bokeh_is_loading--;\n",
" if (root._bokeh_is_loading === 0) {\n",
" console.debug(\"Bokeh: all BokehJS libraries/stylesheets loaded\");\n",
" run_callbacks()\n",
" }\n",
" }\n",
"\n",
" function on_error() {\n",
" console.error(\"failed to load \" + url);\n",
" }\n",
"\n",
" for (var i = 0; i < css_urls.length; i++) {\n",
" var url = css_urls[i];\n",
" const element = document.createElement(\"link\");\n",
" element.onload = on_load;\n",
" element.onerror = on_error;\n",
" element.rel = \"stylesheet\";\n",
" element.type = \"text/css\";\n",
" element.href = url;\n",
" console.debug(\"Bokeh: injecting link tag for BokehJS stylesheet: \", url);\n",
" document.body.appendChild(element);\n",
" }\n",
"\n",
" for (var i = 0; i < js_urls.length; i++) {\n",
" var url = js_urls[i];\n",
" var element = document.createElement('script');\n",
" element.onload = on_load;\n",
" element.onerror = on_error;\n",
" element.async = false;\n",
" element.src = url;\n",
" console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n",
" document.head.appendChild(element);\n",
" }\n",
" };var element = document.getElementById(\"1001\");\n",
" if (element == null) {\n",
" console.error(\"Bokeh: ERROR: autoload.js configured with elementid '1001' but no matching script tag was found. \")\n",
" return false;\n",
" }\n",
"\n",
" function inject_raw_css(css) {\n",
" const element = document.createElement(\"style\");\n",
" element.appendChild(document.createTextNode(css));\n",
" document.body.appendChild(element);\n",
" }\n",
"\n",
" \n",
" var js_urls = [\"https://cdn.pydata.org/bokeh/release/bokeh-1.4.0.min.js\", \"https://cdn.pydata.org/bokeh/release/bokeh-widgets-1.4.0.min.js\", \"https://cdn.pydata.org/bokeh/release/bokeh-tables-1.4.0.min.js\", \"https://cdn.pydata.org/bokeh/release/bokeh-gl-1.4.0.min.js\"];\n",
" var css_urls = [];\n",
" \n",
"\n",
" var inline_js = [\n",
" function(Bokeh) {\n",
" Bokeh.set_log_level(\"info\");\n",
" },\n",
" function(Bokeh) {\n",
" \n",
" \n",
" }\n",
" ];\n",
"\n",
" function run_inline_js() {\n",
" \n",
" if (root.Bokeh !== undefined || force === true) {\n",
" \n",
" for (var i = 0; i < inline_js.length; i++) {\n",
" inline_js[i].call(root, root.Bokeh);\n",
" }\n",
" if (force === true) {\n",
" display_loaded();\n",
" }} else if (Date.now() < root._bokeh_timeout) {\n",
" setTimeout(run_inline_js, 100);\n",
" } else if (!root._bokeh_failed_load) {\n",
" console.log(\"Bokeh: BokehJS failed to load within specified timeout.\");\n",
" root._bokeh_failed_load = true;\n",
" } else if (force !== true) {\n",
" var cell = $(document.getElementById(\"1001\")).parents('.cell').data().cell;\n",
" cell.output_area.append_execute_result(NB_LOAD_WARNING)\n",
" }\n",
"\n",
" }\n",
"\n",
" if (root._bokeh_is_loading === 0) {\n",
" console.debug(\"Bokeh: BokehJS loaded, going straight to plotting\");\n",
" run_inline_js();\n",
" } else {\n",
" load_libs(css_urls, js_urls, function() {\n",
" console.debug(\"Bokeh: BokehJS plotting callback run at\", now());\n",
" run_inline_js();\n",
" });\n",
" }\n",
"}(window));"
],
"application/vnd.bokehjs_load.v0+json": "\n(function(root) {\n function now() {\n return new Date();\n }\n\n var force = true;\n\n if (typeof root._bokeh_onload_callbacks === \"undefined\" || force === true) {\n root._bokeh_onload_callbacks = [];\n root._bokeh_is_loading = undefined;\n }\n\n \n\n \n if (typeof (root._bokeh_timeout) === \"undefined\" || force === true) {\n root._bokeh_timeout = Date.now() + 5000;\n root._bokeh_failed_load = false;\n }\n\n var NB_LOAD_WARNING = {'data': {'text/html':\n \"
\\n\"+\n \"
\\n\"+\n \"BokehJS does not appear to have successfully loaded. If loading BokehJS from CDN, this \\n\"+\n \"may be due to a slow or bad network connection. Possible fixes:\\n\"+\n \"
\\n\"+\n \"
\\n\"+\n \"
re-rerun `output_notebook()` to attempt to load from CDN again, or
\"}};\n\n function display_loaded() {\n var el = document.getElementById(\"1001\");\n if (el != null) {\n el.textContent = \"BokehJS is loading...\";\n }\n if (root.Bokeh !== undefined) {\n if (el != null) {\n el.textContent = \"BokehJS \" + root.Bokeh.version + \" successfully loaded.\";\n }\n } else if (Date.now() < root._bokeh_timeout) {\n setTimeout(display_loaded, 100)\n }\n }\n\n\n function run_callbacks() {\n try {\n root._bokeh_onload_callbacks.forEach(function(callback) {\n if (callback != null)\n callback();\n });\n } finally {\n delete root._bokeh_onload_callbacks\n }\n console.debug(\"Bokeh: all callbacks have finished\");\n }\n\n function load_libs(css_urls, js_urls, callback) {\n if (css_urls == null) css_urls = [];\n if (js_urls == null) js_urls = [];\n\n root._bokeh_onload_callbacks.push(callback);\n if (root._bokeh_is_loading > 0) {\n console.debug(\"Bokeh: BokehJS is being loaded, scheduling callback at\", now());\n return null;\n }\n if (js_urls == null || js_urls.length === 0) {\n run_callbacks();\n return null;\n }\n console.debug(\"Bokeh: BokehJS not loaded, scheduling load and callback at\", now());\n root._bokeh_is_loading = css_urls.length + js_urls.length;\n\n function on_load() {\n root._bokeh_is_loading--;\n if (root._bokeh_is_loading === 0) {\n console.debug(\"Bokeh: all BokehJS libraries/stylesheets loaded\");\n run_callbacks()\n }\n }\n\n function on_error() {\n console.error(\"failed to load \" + url);\n }\n\n for (var i = 0; i < css_urls.length; i++) {\n var url = css_urls[i];\n const element = document.createElement(\"link\");\n element.onload = on_load;\n element.onerror = on_error;\n element.rel = \"stylesheet\";\n element.type = \"text/css\";\n element.href = url;\n console.debug(\"Bokeh: injecting link tag for BokehJS stylesheet: \", url);\n document.body.appendChild(element);\n }\n\n for (var i = 0; i < js_urls.length; i++) {\n var url = js_urls[i];\n var element = document.createElement('script');\n element.onload = on_load;\n element.onerror = on_error;\n element.async = false;\n element.src = url;\n console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n document.head.appendChild(element);\n }\n };var element = document.getElementById(\"1001\");\n if (element == null) {\n console.error(\"Bokeh: ERROR: autoload.js configured with elementid '1001' but no matching script tag was found. \")\n return false;\n }\n\n function inject_raw_css(css) {\n const element = document.createElement(\"style\");\n element.appendChild(document.createTextNode(css));\n document.body.appendChild(element);\n }\n\n \n var js_urls = [\"https://cdn.pydata.org/bokeh/release/bokeh-1.4.0.min.js\", \"https://cdn.pydata.org/bokeh/release/bokeh-widgets-1.4.0.min.js\", \"https://cdn.pydata.org/bokeh/release/bokeh-tables-1.4.0.min.js\", \"https://cdn.pydata.org/bokeh/release/bokeh-gl-1.4.0.min.js\"];\n var css_urls = [];\n \n\n var inline_js = [\n function(Bokeh) {\n Bokeh.set_log_level(\"info\");\n },\n function(Bokeh) {\n \n \n }\n ];\n\n function run_inline_js() {\n \n if (root.Bokeh !== undefined || force === true) {\n \n for (var i = 0; i < inline_js.length; i++) {\n inline_js[i].call(root, root.Bokeh);\n }\n if (force === true) {\n display_loaded();\n }} else if (Date.now() < root._bokeh_timeout) {\n setTimeout(run_inline_js, 100);\n } else if (!root._bokeh_failed_load) {\n console.log(\"Bokeh: BokehJS failed to load within specified timeout.\");\n root._bokeh_failed_load = true;\n } else if (force !== true) {\n var cell = $(document.getElementById(\"1001\")).parents('.cell').data().cell;\n cell.output_area.append_execute_result(NB_LOAD_WARNING)\n }\n\n }\n\n if (root._bokeh_is_loading === 0) {\n console.debug(\"Bokeh: BokehJS loaded, going straight to plotting\");\n run_inline_js();\n } else {\n load_libs(css_urls, js_urls, function() {\n console.debug(\"Bokeh: BokehJS plotting callback run at\", now());\n run_inline_js();\n });\n }\n}(window));"
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/javascript": [
"\n",
"(function(root) {\n",
" function now() {\n",
" return new Date();\n",
" }\n",
"\n",
" var force = true;\n",
"\n",
" if (typeof root._bokeh_onload_callbacks === \"undefined\" || force === true) {\n",
" root._bokeh_onload_callbacks = [];\n",
" root._bokeh_is_loading = undefined;\n",
" }\n",
"\n",
" var JS_MIME_TYPE = 'application/javascript';\n",
" var HTML_MIME_TYPE = 'text/html';\n",
" var EXEC_MIME_TYPE = 'application/vnd.bokehjs_exec.v0+json';\n",
" var CLASS_NAME = 'output_bokeh rendered_html';\n",
"\n",
" /**\n",
" * Render data to the DOM node\n",
" */\n",
" function render(props, node) {\n",
" var script = document.createElement(\"script\");\n",
" node.appendChild(script);\n",
" }\n",
"\n",
" /**\n",
" * Handle when an output is cleared or removed\n",
" */\n",
" function handleClearOutput(event, handle) {\n",
" var cell = handle.cell;\n",
"\n",
" var id = cell.output_area._bokeh_element_id;\n",
" var server_id = cell.output_area._bokeh_server_id;\n",
" // Clean up Bokeh references\n",
" if (id != null && id in Bokeh.index) {\n",
" Bokeh.index[id].model.document.clear();\n",
" delete Bokeh.index[id];\n",
" }\n",
"\n",
" if (server_id !== undefined) {\n",
" // Clean up Bokeh references\n",
" var cmd = \"from bokeh.io.state import curstate; print(curstate().uuid_to_server['\" + server_id + \"'].get_sessions()[0].document.roots[0]._id)\";\n",
" cell.notebook.kernel.execute(cmd, {\n",
" iopub: {\n",
" output: function(msg) {\n",
" var id = msg.content.text.trim();\n",
" if (id in Bokeh.index) {\n",
" Bokeh.index[id].model.document.clear();\n",
" delete Bokeh.index[id];\n",
" }\n",
" }\n",
" }\n",
" });\n",
" // Destroy server and session\n",
" var cmd = \"import bokeh.io.notebook as ion; ion.destroy_server('\" + server_id + \"')\";\n",
" cell.notebook.kernel.execute(cmd);\n",
" }\n",
" }\n",
"\n",
" /**\n",
" * Handle when a new output is added\n",
" */\n",
" function handleAddOutput(event, handle) {\n",
" var output_area = handle.output_area;\n",
" var output = handle.output;\n",
"\n",
" // limit handleAddOutput to display_data with EXEC_MIME_TYPE content only\n",
" if ((output.output_type != \"display_data\") || (!output.data.hasOwnProperty(EXEC_MIME_TYPE))) {\n",
" return\n",
" }\n",
"\n",
" var toinsert = output_area.element.find(\".\" + CLASS_NAME.split(' ')[0]);\n",
"\n",
" if (output.metadata[EXEC_MIME_TYPE][\"id\"] !== undefined) {\n",
" toinsert[toinsert.length - 1].firstChild.textContent = output.data[JS_MIME_TYPE];\n",
" // store reference to embed id on output_area\n",
" output_area._bokeh_element_id = output.metadata[EXEC_MIME_TYPE][\"id\"];\n",
" }\n",
" if (output.metadata[EXEC_MIME_TYPE][\"server_id\"] !== undefined) {\n",
" var bk_div = document.createElement(\"div\");\n",
" bk_div.innerHTML = output.data[HTML_MIME_TYPE];\n",
" var script_attrs = bk_div.children[0].attributes;\n",
" for (var i = 0; i < script_attrs.length; i++) {\n",
" toinsert[toinsert.length - 1].firstChild.setAttribute(script_attrs[i].name, script_attrs[i].value);\n",
" }\n",
" // store reference to server id on output_area\n",
" output_area._bokeh_server_id = output.metadata[EXEC_MIME_TYPE][\"server_id\"];\n",
" }\n",
" }\n",
"\n",
" function register_renderer(events, OutputArea) {\n",
"\n",
" function append_mime(data, metadata, element) {\n",
" // create a DOM node to render to\n",
" var toinsert = this.create_output_subarea(\n",
" metadata,\n",
" CLASS_NAME,\n",
" EXEC_MIME_TYPE\n",
" );\n",
" this.keyboard_manager.register_events(toinsert);\n",
" // Render to node\n",
" var props = {data: data, metadata: metadata[EXEC_MIME_TYPE]};\n",
" render(props, toinsert[toinsert.length - 1]);\n",
" element.append(toinsert);\n",
" return toinsert\n",
" }\n",
"\n",
" /* Handle when an output is cleared or removed */\n",
" events.on('clear_output.CodeCell', handleClearOutput);\n",
" events.on('delete.Cell', handleClearOutput);\n",
"\n",
" /* Handle when a new output is added */\n",
" events.on('output_added.OutputArea', handleAddOutput);\n",
"\n",
" /**\n",
" * Register the mime type and append_mime function with output_area\n",
" */\n",
" OutputArea.prototype.register_mime_type(EXEC_MIME_TYPE, append_mime, {\n",
" /* Is output safe? */\n",
" safe: true,\n",
" /* Index of renderer in `output_area.display_order` */\n",
" index: 0\n",
" });\n",
" }\n",
"\n",
" // register the mime type if in Jupyter Notebook environment and previously unregistered\n",
" if (root.Jupyter !== undefined) {\n",
" var events = require('base/js/events');\n",
" var OutputArea = require('notebook/js/outputarea').OutputArea;\n",
"\n",
" if (OutputArea.prototype.mime_types().indexOf(EXEC_MIME_TYPE) == -1) {\n",
" register_renderer(events, OutputArea);\n",
" }\n",
" }\n",
"\n",
" \n",
" if (typeof (root._bokeh_timeout) === \"undefined\" || force === true) {\n",
" root._bokeh_timeout = Date.now() + 5000;\n",
" root._bokeh_failed_load = false;\n",
" }\n",
"\n",
" var NB_LOAD_WARNING = {'data': {'text/html':\n",
" \"
\\n\"+\n",
" \"
\\n\"+\n",
" \"BokehJS does not appear to have successfully loaded. If loading BokehJS from CDN, this \\n\"+\n",
" \"may be due to a slow or bad network connection. Possible fixes:\\n\"+\n",
" \"
\\n\"+\n",
" \"
\\n\"+\n",
" \"
re-rerun `output_notebook()` to attempt to load from CDN again, or
\"}};\n",
"\n",
" function display_loaded() {\n",
" var el = document.getElementById(null);\n",
" if (el != null) {\n",
" el.textContent = \"BokehJS is loading...\";\n",
" }\n",
" if (root.Bokeh !== undefined) {\n",
" if (el != null) {\n",
" el.textContent = \"BokehJS \" + root.Bokeh.version + \" successfully loaded.\";\n",
" }\n",
" } else if (Date.now() < root._bokeh_timeout) {\n",
" setTimeout(display_loaded, 100)\n",
" }\n",
" }\n",
"\n",
"\n",
" function run_callbacks() {\n",
" try {\n",
" root._bokeh_onload_callbacks.forEach(function(callback) {\n",
" if (callback != null)\n",
" callback();\n",
" });\n",
" } finally {\n",
" delete root._bokeh_onload_callbacks\n",
" }\n",
" console.debug(\"Bokeh: all callbacks have finished\");\n",
" }\n",
"\n",
" function load_libs(css_urls, js_urls, callback) {\n",
" if (css_urls == null) css_urls = [];\n",
" if (js_urls == null) js_urls = [];\n",
"\n",
" root._bokeh_onload_callbacks.push(callback);\n",
" if (root._bokeh_is_loading > 0) {\n",
" console.debug(\"Bokeh: BokehJS is being loaded, scheduling callback at\", now());\n",
" return null;\n",
" }\n",
" if (js_urls == null || js_urls.length === 0) {\n",
" run_callbacks();\n",
" return null;\n",
" }\n",
" console.debug(\"Bokeh: BokehJS not loaded, scheduling load and callback at\", now());\n",
" root._bokeh_is_loading = css_urls.length + js_urls.length;\n",
"\n",
" function on_load() {\n",
" root._bokeh_is_loading--;\n",
" if (root._bokeh_is_loading === 0) {\n",
" console.debug(\"Bokeh: all BokehJS libraries/stylesheets loaded\");\n",
" run_callbacks()\n",
" }\n",
" }\n",
"\n",
" function on_error() {\n",
" console.error(\"failed to load \" + url);\n",
" }\n",
"\n",
" for (var i = 0; i < css_urls.length; i++) {\n",
" var url = css_urls[i];\n",
" const element = document.createElement(\"link\");\n",
" element.onload = on_load;\n",
" element.onerror = on_error;\n",
" element.rel = \"stylesheet\";\n",
" element.type = \"text/css\";\n",
" element.href = url;\n",
" console.debug(\"Bokeh: injecting link tag for BokehJS stylesheet: \", url);\n",
" document.body.appendChild(element);\n",
" }\n",
"\n",
" for (var i = 0; i < js_urls.length; i++) {\n",
" var url = js_urls[i];\n",
" var element = document.createElement('script');\n",
" element.onload = on_load;\n",
" element.onerror = on_error;\n",
" element.async = false;\n",
" element.src = url;\n",
" console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n",
" document.head.appendChild(element);\n",
" }\n",
" };\n",
"\n",
" function inject_raw_css(css) {\n",
" const element = document.createElement(\"style\");\n",
" element.appendChild(document.createTextNode(css));\n",
" document.body.appendChild(element);\n",
" }\n",
"\n",
" \n",
" var js_urls = [];\n",
" var css_urls = [];\n",
" \n",
"\n",
" var inline_js = [\n",
" function(Bokeh) {\n",
" /* BEGIN bokeh.min.js */\n",
" /*!\n",
" * Copyright (c) 2012 - 2019, Anaconda, Inc., and Bokeh Contributors\n",
" * All rights reserved.\n",
" * \n",
" * Redistribution and use in source and binary forms, with or without modification,\n",
" * are permitted provided that the following conditions are met:\n",
" * \n",
" * Redistributions of source code must retain the above copyright notice,\n",
" * this list of conditions and the following disclaimer.\n",
" * \n",
" * Redistributions in binary form must reproduce the above copyright notice,\n",
" * this list of conditions and the following disclaimer in the documentation\n",
" * and/or other materials provided with the distribution.\n",
" * \n",
" * Neither the name of Anaconda nor the names of any contributors\n",
" * may be used to endorse or promote products derived from this software\n",
" * without specific prior written permission.\n",
" * \n",
" * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS \"AS IS\"\n",
" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE\n",
" * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE\n",
" * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE\n",
" * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR\n",
" * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF\n",
" * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS\n",
" * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN\n",
" * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)\n",
" * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF\n",
" * THE POSSIBILITY OF SUCH DAMAGE.\n",
" */\n",
" (function(root, factory) {\n",
" root[\"Bokeh\"] = factory();\n",
" })(this, function() {\n",
" var define;\n",
" var parent_require = typeof require === \"function\" && require\n",
" return (function(modules, entry, aliases, externals) {\n",
" if (aliases === undefined) aliases = {};\n",
" if (externals === undefined) externals = {};\n",
"\n",
" var cache = {};\n",
"\n",
" var normalize = function(name) {\n",
" if (typeof name === \"number\")\n",
" return name;\n",
"\n",
" if (name === \"bokehjs\")\n",
" return entry;\n",
"\n",
" var prefix = \"@bokehjs/\"\n",
" if (name.slice(0, prefix.length) === prefix)\n",
" name = name.slice(prefix.length)\n",
"\n",
" var alias = aliases[name]\n",
" if (alias != null)\n",
" return alias;\n",
"\n",
" var trailing = name.length > 0 && name[name.lenght-1] === \"/\";\n",
" var index = aliases[name + (trailing ? \"\" : \"/\") + \"index\"];\n",
" if (index != null)\n",
" return index;\n",
"\n",
" return name;\n",
" }\n",
"\n",
" var require = function(name) {\n",
" var mod = cache[name];\n",
" if (!mod) {\n",
" var id = normalize(name);\n",
"\n",
" mod = cache[id];\n",
" if (!mod) {\n",
" if (!modules[id]) {\n",
" if (parent_require && externals[id]) {\n",
" try {\n",
" mod = {exports: parent_require(id)};\n",
" cache[id] = cache[name] = mod;\n",
" return mod.exports;\n",
" } catch (e) {}\n",
" }\n",
"\n",
" var err = new Error(\"Cannot find module '\" + name + \"'\");\n",
" err.code = 'MODULE_NOT_FOUND';\n",
" throw err;\n",
" }\n",
"\n",
" mod = {exports: {}};\n",
" cache[id] = cache[name] = mod;\n",
" modules[id].call(mod.exports, require, mod, mod.exports);\n",
" } else\n",
" cache[name] = mod;\n",
" }\n",
"\n",
" return mod.exports;\n",
" }\n",
"\n",
" var main = require(entry);\n",
" main.require = require;\n",
"\n",
" main.register_plugin = function(plugin_modules, plugin_entry, plugin_aliases, plugin_externals) {\n",
" if (plugin_aliases === undefined) plugin_aliases = {};\n",
" if (plugin_externals === undefined) plugin_externals = {};\n",
"\n",
" for (var name in plugin_modules) {\n",
" modules[name] = plugin_modules[name];\n",
" }\n",
"\n",
" for (var name in plugin_aliases) {\n",
" aliases[name] = plugin_aliases[name];\n",
" }\n",
"\n",
" for (var name in plugin_externals) {\n",
" externals[name] = plugin_externals[name];\n",
" }\n",
"\n",
" var plugin = require(plugin_entry);\n",
"\n",
" for (var name in plugin) {\n",
" main[name] = plugin[name];\n",
" }\n",
"\n",
" return plugin;\n",
" }\n",
"\n",
" return main;\n",
" })\n",
" ([\n",
" function _(n,o,r){n(1),function(n){for(var o in n)r.hasOwnProperty(o)||(r[o]=n[o])}(n(102))},\n",
" function _(n,c,f){n(2),n(11),n(14),n(21),n(49),n(52),n(87),n(94),n(100)},\n",
" function _(e,n,a){e(3)()||Object.defineProperty(Object,\"assign\",{value:e(4),configurable:!0,enumerable:!1,writable:!0})},\n",
" function _(r,t,o){t.exports=function(){var r,t=Object.assign;return\"function\"==typeof t&&(t(r={foo:\"raz\"},{bar:\"dwa\"},{trzy:\"trzy\"}),r.foo+r.bar+r.trzy===\"razdwatrzy\")}},\n",
" function _(t,r,n){var o=t(5),c=t(10),a=Math.max;r.exports=function(t,r){var n,f,h,i=a(arguments.length,2);for(t=Object(c(t)),h=function(o){try{t[o]=r[o]}catch(t){n||(n=t)}},f=1;f= 0\");if(!isFinite(r))throw new RangeError(\"Count must be < ∞\");for(n=\"\";r;)r%2&&(n+=t),r>1&&(t+=t),r>>=1;return n}},\n",
" function _(t,i,n){var r=t(18),a=Math.abs,o=Math.floor;i.exports=function(t){return isNaN(t)?0:0!==(t=Number(t))&&isFinite(t)?r(t)*o(a(t)):t}},\n",
" function _(n,t,i){t.exports=n(19)()?Math.sign:n(20)},\n",
" function _(n,t,o){t.exports=function(){var n=Math.sign;return\"function\"==typeof n&&(1===n(10)&&-1===n(-20))}},\n",
" function _(n,r,t){r.exports=function(n){return n=Number(n),isNaN(n)||0===n?n:n>0?1:-1}},\n",
" function _(e,r,a){e(22)()||Object.defineProperty(Array,\"from\",{value:e(23),configurable:!0,enumerable:!1,writable:!0})},\n",
" function _(n,o,r){o.exports=function(){var n,o,r=Array.from;return\"function\"==typeof r&&(o=r(n=[\"raz\",\"dwa\"]),Boolean(o&&o!==n&&\"dwa\"===o[1]))}},\n",
" function _(e,l,r){var n=e(24).iterator,t=e(44),a=e(45),i=e(46),u=e(47),o=e(10),f=e(8),c=e(48),v=Array.isArray,h=Function.prototype.call,y={configurable:!0,enumerable:!0,writable:!0,value:null},s=Object.defineProperty;l.exports=function(e){var l,r,A,g,p,w,b,d,x,j,O=arguments[1],m=arguments[2];if(e=Object(o(e)),f(O)&&u(O),this&&this!==Array&&a(this))l=this;else{if(!O){if(t(e))return 1!==(p=e.length)?Array.apply(null,e):((g=new Array(1))[0]=e[0],g);if(v(e)){for(g=new Array(p=e.length),r=0;r
\"],_default:[0,\"\",\"\"]};function ve(e,t){var n;return n=void 0!==e.getElementsByTagName?e.getElementsByTagName(t||\"*\"):void 0!==e.querySelectorAll?e.querySelectorAll(t||\"*\"):[],void 0===t||t&&N(e,t)?b.merge([e],n):n}function ye(e,t){for(var n=0,r=e.length;n-1)i&&i.push(o);else if(l=ie(o),a=ve(f.appendChild(o),\"script\"),l&&ye(a),n)for(c=0;o=a[c++];)he.test(o.type||\"\")&&n.push(o);return f}me=r.createDocumentFragment().appendChild(r.createElement(\"div\")),(xe=r.createElement(\"input\")).setAttribute(\"type\",\"radio\"),xe.setAttribute(\"checked\",\"checked\"),xe.setAttribute(\"name\",\"t\"),me.appendChild(xe),h.checkClone=me.cloneNode(!0).cloneNode(!0).lastChild.checked,me.innerHTML=\"\",h.noCloneChecked=!!me.cloneNode(!0).lastChild.defaultValue;var Te=/^key/,Ce=/^(?:mouse|pointer|contextmenu|drag|drop)|click/,Ee=/^([^.]*)(?:\\.(.+)|)/;function ke(){return!0}function Se(){return!1}function Ne(e,t){return e===function(){try{return r.activeElement}catch(e){}}()==(\"focus\"===t)}function Ae(e,t,n,r,i,o){var a,s;if(\"object\"==typeof t){for(s in\"string\"!=typeof n&&(r=r||n,n=void 0),t)Ae(e,s,n,r,t[s],o);return e}if(null==r&&null==i?(i=n,r=n=void 0):null==i&&(\"string\"==typeof n?(i=r,r=void 0):(i=r,r=n,n=void 0)),!1===i)i=Se;else if(!i)return e;return 1===o&&(a=i,(i=function(e){return b().off(e),a.apply(this,arguments)}).guid=a.guid||(a.guid=b.guid++)),e.each(function(){b.event.add(this,t,i,r,n)})}function De(e,t,n){n?(Y.set(e,t,!1),b.event.add(e,t,{namespace:!1,handler:function(e){var r,i,a=Y.get(this,t);if(1&e.isTrigger&&this[t]){if(a.length)(b.event.special[t]||{}).delegateType&&e.stopPropagation();else if(a=o.call(arguments),Y.set(this,t,a),r=n(this,t),this[t](),a!==(i=Y.get(this,t))||r?Y.set(this,t,!1):i={},a!==i)return e.stopImmediatePropagation(),e.preventDefault(),i.value}else a.length&&(Y.set(this,t,{value:b.event.trigger(b.extend(a[0],b.Event.prototype),a.slice(1),this)}),e.stopImmediatePropagation())}})):void 0===Y.get(e,t)&&b.event.add(e,t,ke)}b.event={global:{},add:function(e,t,n,r,i){var o,a,s,u,l,c,f,p,d,h,g,v=Y.get(e);if(v)for(n.handler&&(n=(o=n).handler,i=o.selector),i&&b.find.matchesSelector(re,i),n.guid||(n.guid=b.guid++),(u=v.events)||(u=v.events={}),(a=v.handle)||(a=v.handle=function(t){return void 0!==b&&b.event.triggered!==t.type?b.event.dispatch.apply(e,arguments):void 0}),l=(t=(t||\"\").match(P)||[\"\"]).length;l--;)d=g=(s=Ee.exec(t[l])||[])[1],h=(s[2]||\"\").split(\".\").sort(),d&&(f=b.event.special[d]||{},d=(i?f.delegateType:f.bindType)||d,f=b.event.special[d]||{},c=b.extend({type:d,origType:g,data:r,handler:n,guid:n.guid,selector:i,needsContext:i&&b.expr.match.needsContext.test(i),namespace:h.join(\".\")},o),(p=u[d])||((p=u[d]=[]).delegateCount=0,f.setup&&!1!==f.setup.call(e,r,h,a)||e.addEventListener&&e.addEventListener(d,a)),f.add&&(f.add.call(e,c),c.handler.guid||(c.handler.guid=n.guid)),i?p.splice(p.delegateCount++,0,c):p.push(c),b.event.global[d]=!0)},remove:function(e,t,n,r,i){var o,a,s,u,l,c,f,p,d,h,g,v=Y.hasData(e)&&Y.get(e);if(v&&(u=v.events)){for(l=(t=(t||\"\").match(P)||[\"\"]).length;l--;)if(d=g=(s=Ee.exec(t[l])||[])[1],h=(s[2]||\"\").split(\".\").sort(),d){for(f=b.event.special[d]||{},p=u[d=(r?f.delegateType:f.bindType)||d]||[],s=s[2]&&new RegExp(\"(^|\\\\.)\"+h.join(\"\\\\.(?:.*\\\\.|)\")+\"(\\\\.|$)\"),a=o=p.length;o--;)c=p[o],!i&&g!==c.origType||n&&n.guid!==c.guid||s&&!s.test(c.namespace)||r&&r!==c.selector&&(\"**\"!==r||!c.selector)||(p.splice(o,1),c.selector&&p.delegateCount--,f.remove&&f.remove.call(e,c));a&&!p.length&&(f.teardown&&!1!==f.teardown.call(e,h,v.handle)||b.removeEvent(e,d,v.handle),delete u[d])}else for(d in u)b.event.remove(e,d+t[l],n,r,!0);b.isEmptyObject(u)&&Y.remove(e,\"handle events\")}},dispatch:function(e){var t,n,r,i,o,a,s=b.event.fix(e),u=new Array(arguments.length),l=(Y.get(this,\"events\")||{})[s.type]||[],c=b.event.special[s.type]||{};for(u[0]=s,t=1;t=1))for(;l!==this;l=l.parentNode||this)if(1===l.nodeType&&(\"click\"!==e.type||!0!==l.disabled)){for(o=[],a={},n=0;n-1:b.find(i,this,null,[l]).length),a[i]&&o.push(r);o.length&&s.push({elem:l,handlers:o})}return l=this,u\\x20\\t\\r\\n\\f]*)[^>]*)\\/>/gi,qe=/"
],
"text/plain": [
":Layout\n",
" .Points.I :Points [Nanog,Prdm14] (cell)\n",
" .Points.II :Points [Nanog,Rest] (cell)\n",
" .Points.III :Points [Nanog,Rex1] (cell)\n",
" .Points.IV :Points [Prdm14,Rest] (cell)\n",
" .Points.V :Points [Prdm14,Rex1] (cell)\n",
" .Points.VI :Points [Rest,Rex1] (cell)"
]
},
"execution_count": 5,
"metadata": {
"application/vnd.holoviews_exec.v0+json": {
"id": "1801"
}
},
"output_type": "execute_result"
}
],
"source": [
"plots = [\n",
" hv.Points(data=df, kdims=[gene1, gene2], vdims=[\"cell\"]).opts(\n",
" color=\"cell\", cmap=\"viridis\",\n",
" ).opts(\n",
" frame_height=150,\n",
" frame_width=150,\n",
" size=2\n",
" )\n",
" for gene1, gene2 in itertools.combinations(genes, 2)\n",
"]\n",
"\n",
"hv.Layout(plots).cols(3)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"It appears as though there is a correlation between Rest, Nanog, and Rex1. They tend to be high or low together. Prdm14, on the other hand, shows less correlation.\n",
"\n",
"To futher explore the data set, we will plot the ECDFs again, but this time coloring them by the ranking in Rex1 levels."
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.holoviews_exec.v0+json": "",
"text/html": [
"
\n",
"\n",
"\n",
"\n",
"\n",
"\n",
" \n",
"
\n",
""
],
"text/plain": [
":Layout\n",
" .Scatter.I :Scatter [Nanog] (Nanog ECDF,Rex1 ECDF)\n",
" .Scatter.II :Scatter [Prdm14] (Prdm14 ECDF,Rex1 ECDF)\n",
" .Scatter.III :Scatter [Rest] (Rest ECDF,Rex1 ECDF)\n",
" .Scatter.IV :Scatter [Rex1] (Rex1 ECDF,Rex1 ECDF)"
]
},
"execution_count": 6,
"metadata": {
"application/vnd.holoviews_exec.v0+json": {
"id": "2757"
}
},
"output_type": "execute_result"
}
],
"source": [
"# Generate ECDF values\n",
"for gene in [\"Nanog\", \"Prdm14\", \"Rest\", \"Rex1\"]:\n",
" df[f\"{gene} ECDF\"] = df[gene].rank(method='first') / len(df)\n",
"\n",
"plots = [\n",
" hv.Scatter(data=df, kdims=[f\"{gene}\"], vdims=[f\"{gene} ECDF\", \"Rex1 ECDF\"]).opts(\n",
" color='Rex1 ECDF',\n",
" cmap='viridis',\n",
" ).opts(\n",
" frame_height=150,\n",
" frame_width=150,\n",
" size=2\n",
" )\n",
" for gene in genes\n",
"]\n",
"\n",
"hv.Layout(plots).cols(2)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We see what we expected in the pairwise scatter plots."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Model for mRNA levels\n",
"\n",
"In this part of the lesson, we will model gene expression of each of the four genes separately, though they are connected by which cell is being measured. We will discuss that later. For now, we develop a model for the mRNA counts for a given gene.\n",
"\n",
"If gene expression is a purely Poisson process, we might expect a Poisson distribution. Or, if the copy number is itself somehow tightly regulated, we might expect a Normal distribution.\n",
"\n",
"Study of gene expression dynamics, largely through fluorescence imaging, has lead to a different story. Expression of many important genes can be **bursty**, which means that the promoter is on for a period of time in which transcripts are made, and then it is off for a while. The \"on\" periods are called \"bursts\" and are themselves well-modeled as a Poisson process. That is to say that the amount of time that a promoter is on is Exponentially distributed. Thus, we can think of a burst as a series of Bernoulli trials. A \"failure\" is production of an mRNA molecule, and a \"success\" is a switch to an off state. The number of \"successes\" we get is equal to the number of bursts we get per decay time of the mRNA. We can define the number of bursts before degradation of the mRNA as $\\alpha$. This is the so-called **burst frequency**. So, we have a series of Bernoulli trials and we wait for $\\alpha$ successes. Then, $n$, the total number of failures (which is the number of mRNA transcripts), is Negative Binomially distributed, since this matches the Negative Binomial story. Referring to the parametrization used in the [distribution explorer](http://bois.caltech.edu/distribution_explorer/discrete/negative_binomial.html),\n",
"\n",
"\\begin{align}\n",
"n \\sim \\text{NBinom}(\\alpha, \\beta),\n",
"\\end{align}\n",
"\n",
"where $\\beta$ is related to the probability $\\theta$ of a success of a Bernoulli trial by $\\theta = \\beta/(1+\\beta)$.\n",
"\n",
"The meaning of the parameter $\\beta$, and the related quantity $\\theta$, can be a little mystical here. We would like to relate it to the typical **burst size**, i.e., the typical number of transcripts made per burst. The size of a single given burst (that is, the number of transcripts made in a burst) is geometrically distributed (since it matches that story), so\n",
"\n",
"\\begin{align}\n",
"f(n_\\mathrm{burst} ; \\theta) = (1-\\theta)^{n_\\mathrm{burst}}\\,\\theta.\n",
"\\end{align}\n",
"\n",
"The mean number of transcripts $b$ in a burst is\n",
"\n",
"\\begin{align}\n",
"b \\equiv \\left\\langle n_\\mathrm{burst}\\right\\rangle &= \\sum_{n_\\mathrm{burst}=0}^\\infty\n",
"n_\\mathrm{burst}(1-\\theta)^{n_\\mathrm{burst}}\\theta\\\\[1em]\n",
"&= \\theta \\sum_{n_\\mathrm{burst}=0}^\\infty\n",
"n_\\mathrm{burst}(1-\\theta)^{n_\\mathrm{burst}} \\\\[1em]\n",
"&= \\theta(1-\\theta)\\, \\frac{\\mathrm{d}}{\\mathrm{d}(1-\\theta)}\\sum_{n_\\mathrm{burst}=0}^\\infty(1-\\theta)^{n_\\mathrm{burst}} \\\\[1em]\n",
"&= \\theta(1-\\theta)\\, \\frac{\\mathrm{d}}{\\mathrm{d}(1-\\theta)}\\,\\frac{1}{\\theta}\\\\[1em]\n",
"&= -\\theta(1-\\theta)\\, \\frac{\\mathrm{d}}{\\mathrm{d}\\theta}\\,\\frac{1}{\\theta} \\\\[1em]\n",
"&= \\frac{1-\\theta}{\\theta} \\\\[1em]\n",
"&= \\frac{1}{\\beta}.\n",
"\\end{align}\n",
"\n",
"So we now see that $1/\\beta$ is the typical burst size. Using the Negative Binomial property of mRNA copy numbers of bursty gene expression, we can characterize the expression levels of a given cell type by the two parameters of the Negative Binomial, the burst frequency $\\alpha$ and the burst size $b$. These are the two parameters we would like to infer from transcript count data. The conclusion of all this is that we have have our likelihood.\n",
"\n",
"\\begin{align}\n",
"&n \\sim \\text{NBinom}(\\alpha, \\beta),\\\\[1em]\n",
"&b = 1/\\beta.\n",
"\\end{align}"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Maximum likelihood estimation by numerical optimization\n",
"\n",
"To compute the MLE for the two parameter, the burst frequency $\\alpha$ and burst size $\\beta$, we need to define the likelihood function. We make the assumption that the number of transcripts in each cell is i.i.d., giving a statistical model of\n",
"\n",
"\\begin{align}\n",
"n_i \\sim \\text{NBinom}(\\alpha,\\beta)\\;\\forall i.\n",
"\\end{align}\n",
"\n",
"Referring to the PMF of the Negative Binomial distribution and making the change of variables $b=1/\\beta$, the likelihood function is\n",
"\n",
"\\begin{align}\n",
"L(\\alpha, b;\\mathbf{n}) = \\prod_i\\frac{\\Gamma(n_i+\\alpha)}{\\Gamma(\\alpha)n!}\\left(\\frac{1}{1+b}\\right)^\\alpha\\left(\\frac{b}{1+b}\\right)^{n_i},\n",
"\\end{align}\n",
"\n",
"and the log-likelihood is \n",
"\n",
"\\begin{align}\n",
"\\ell(\\alpha, b;\\mathbf{n}) = \\ln L(\\alpha, b;\\mathbf{n}) = \\sum_i \\ln \\left(\\frac{\\Gamma(n_i+\\alpha)}{\\Gamma(\\alpha)n!}\\left(\\frac{1}{1+b}\\right)^\\alpha\\left(\\frac{b}{1+b}\\right)^{n_i}\\right).\n",
"\\end{align}\n",
"\n",
"To find the MLE, we need to find the values of $\\alpha$ and $b$ that satisfy\n",
"\n",
"\\begin{align}\n",
"\\frac{\\partial \\ell}{\\partial \\alpha} = \\frac{\\partial \\ell}{\\partial b} = 0.\n",
"\\end{align}\n",
"\n",
"Unfortunately, not closed form solution exists for this. We therefore need to resort to [numerical optimization](https://en.wikipedia.org/wiki/Mathematical_optimization) to find the MLE $\\alpha^*$ and $b^*$."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Numerical optimization\n",
"\n",
"Numerical optimization is typically implemented to find a *minimizers* of a function rather than maximizers. The function we are minimizing is called an **objective function**. This is not a problem for maximum likelihood estimation; we simply define a *negative* log-likelihood as our objective function.\n",
"\n",
"Sometimes, we have **constraints** on the allowed values for the parameters. In our case, both $\\alpha$ and $\\beta$ must be non-negative. So, the statement of the optimization problem to find the MLE is\n",
"\n",
"\\begin{align}\n",
"\\text{minimize } (-\\ell(\\alpha, \\beta;\\mathbf{n})) \\text{ s.t. } \\alpha, \\beta > 0,\n",
"\\end{align}\n",
"\n",
"where \"s.t.\" is read \"subject to.\" If we explicitly consider the constraints, we are performing a **constrained optimization problem**. Constrained optimization is often considerably more challenging than unconstrained optimization. There are ways around simple positivity constraints such as the ones here. We can instead define new variables $\\xi_\\alpha = \\ln \\alpha$ and $\\xi_b = \\ln b$, and write the log-likelihood in terms of these variables instead. We then find minimizing $\\xi_\\alpha$ and $\\xi_b$ and convert them to $\\alpha$ and $\\beta$ by exponentiation after performing the minimization calculation.\n",
"\n",
"Numerical optimization is implemented in the `scipy.optimize` submodule ([docs](https://docs.scipy.org/doc/scipy/reference/optimize.html)). Most of the functionality you need is in the `scipy.optimize.minimize()` function. To use the function to find minimizers of an objective function, the standard call signature is\n",
"\n",
"```python\n",
"scipy.optimize.minimize(fun, x0, args=(), method='BFGS')\n",
"```\n",
"\n",
"The `fun` argument is a function with call signature `fun(x, *args)`, where `x` is the variables used in the optimization. In the case of MLE, the function is the negative log-likelihood function, `x` is always an array of the parameter values we are trying to estimate, and the remaining arguments are additional arguments passed into the likelihood function, which always include the measured data. Importantly, we have to provide a guess as to which values of the parameters are optimal. This is passed as an array `x0`. The kwarg `args` specifies which additional arguments are to be passed to `fun()`. **Note that `args` must be a tuple**. Finally, the `method` keyword argument specifies which numerical optimization method to use, the default being the [Broyden–Fletcher–Goldfarb–Shanno algorithm](https://en.wikipedia.org/wiki/Broyden–Fletcher–Goldfarb–Shanno_algorithm). This is a good algorithm but does compute derivatives, so it is only useful if the parameter values can take on any real value.\n",
"\n",
"I have omitted the `bounds` keyword argument here because we will not usually use them, as we will either do the logarithm trick above, or use [Powell's method](https://en.wikipedia.org/wiki/Powell%27s_method), which does not required calculation of derivatives (so we may therefore have discontinuities in the objective function and set the value of the objective function to be infinity for disallowed parameter values)."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Solving with the BFGS algorithm\n",
"\n",
"We will now solve the minimization problem using the BFGS algorithm, specifying the parameters using logarithms to make sure that the problem is completely unconstrained. First, we have to write a function for the log-likelihood matching the required function signature of the input `fun` to `scipy.optimize.minimize()`. Note that we do not have to enter in the code for the log-likelihood. The `scipy.stats` module has functions to compute the log-PDF/log-PMF for many distributions. We just need to check the distribution explorer to ensure we use the parametrization that the `scipy.stats` module requires. In this case, it expects parameters `alpha` and `1/1+b`."
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [],
"source": [
"def log_like_iid_nbinom_log_params(log_params, n):\n",
" \"\"\"Log likelihood for i.i.d. NBinom measurements with \n",
" input being logarithm of parameters.\n",
" \n",
" Parameters\n",
" ----------\n",
" log_params : array\n",
" Logarithm of the parameters alpha and b.\n",
" n : array\n",
" Array of counts.\n",
" \n",
" Returns\n",
" -------\n",
" output : float\n",
" Log-likelihood. \n",
" \"\"\"\n",
" log_alpha, log_b = log_params\n",
"\n",
" alpha = np.exp(log_alpha)\n",
" b = np.exp(log_b)\n",
"\n",
" return np.sum(st.nbinom.logpmf(n, alpha, 1/(1+b)))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"With the log likelihood specified, we simply use `-log_like_iid_nbinom_params()` as our objective function. I do not have \n",
"a good guess in mind, so I will just start with both parameters being about three, so their logarithms are about one. Let's perform the optimization for the *nanog* gene and look at the result."
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
" fun: 1524.9284357728939\n",
" hess_inv: array([[ 0.00201009, -0.00068819],\n",
" [-0.00068819, 0.00255942]])\n",
" jac: array([0., 0.])\n",
" message: 'Optimization terminated successfully.'\n",
" nfev: 92\n",
" nit: 17\n",
" njev: 23\n",
" status: 0\n",
" success: True\n",
" x: array([0.233833 , 4.24052605])"
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Extract the values for Nanog\n",
"n = df['Nanog'].values\n",
"\n",
"res = scipy.optimize.minimize(\n",
" fun=lambda log_params, n: -log_like_iid_nbinom_log_params(log_params, n),\n",
" x0=np.array([1, 1]),\n",
" args=(n,),\n",
" method='BFGS'\n",
")\n",
"\n",
"res"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The result returned by `scipy.optimize.minimize()` is an `OptimizeResult` object that has several attributes about how the optimization calculation went, including if it was successful. Importantly, the optimal log-parameter values are in the array `x`. We can extract them and exponentiate them to get the MLE."
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"α: 1.263433475874493\n",
"b: 69.444373557454\n"
]
}
],
"source": [
"alpha_mle, b_mle = np.exp(res.x)\n",
"\n",
"print(\"α: \", alpha_mle)\n",
"print(\"b: \", b_mle)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"So, the MLE for the burst frequency is about 1.25 inverse degradation times. The MLE for the burst size is about 70 transcripts per burst."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Solving using Powell's method\n",
"\n",
"As an alternative to the BFGS method, we can use Powell's method. This has the advantage that we do not have to use derivatives in the optimization, so we do not have to use logarithms of the parameters. We do, however, need to specify that the log-likelihood is minus infinity for disallowed parameter values."
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [],
"source": [
"def log_like_iid_nbinom(params, n):\n",
" \"\"\"Log likelihood for i.i.d. NBinom measurements.\"\"\"\n",
" alpha, b = params\n",
" \n",
" if alpha <= 0 or b <= 0:\n",
" return -np.inf\n",
"\n",
" return np.sum(st.nbinom.logpmf(n, alpha, 1/(1+b)))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We take a similar approach to solving using Powell's method. This time, we will catch warnings because the solver will stumble into regions where the log-likelihood is minus infinity. We know this to be the case, as we designed it that way, so we will suppress the warnings to keep our notebook clean."
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"α: 1.263097372292775\n",
"b: 69.34784233505958\n"
]
}
],
"source": [
"with warnings.catch_warnings():\n",
" warnings.simplefilter(\"ignore\")\n",
" \n",
" res = scipy.optimize.minimize(\n",
" fun=lambda params, n: -log_like_iid_nbinom(params, n),\n",
" x0=np.array([3, 3]),\n",
" args=(n,),\n",
" method='Powell'\n",
" )\n",
"\n",
"if res.success:\n",
" alpha_mle, b_mle = res.x\n",
"else:\n",
" raise RuntimeError('Convergence failed with message', res.message)\n",
" \n",
"print(\"α: \", alpha_mle)\n",
"print(\"b: \", b_mle)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"This differs from the result we got with BFGS in the third or fourth decimal place, due to inaccuracies in introducing the logarithms, but the different is not big."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## The likelihood function\n",
"\n",
"To help give a picture of what the likelihood function looks like, and what the optimizer is doing, we can plot it. In this case, we have two parameters, so we can make a contour plot. We first compute the log-likelihood for various values of $\\alpha$ and $b$."
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [],
"source": [
"# alpha and b values for plotting\n",
"alpha = np.linspace(1, 1.5, 100)\n",
"b = np.linspace(50, 90, 100)\n",
"\n",
"# Compute log-likelihood for each value\n",
"log_like = np.empty((100, 100))\n",
"for j, alpha_val in enumerate(alpha):\n",
" for i, b_val in enumerate(b):\n",
" log_like[i, j] = log_like_iid_nbinom((alpha_val, b_val), n)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Remember that the likelihood function is not a probability distribution, so it is not normalized. When we exponentiate the log-likelihood, we may get values close to zero, or very large. It is therefore a good idea to first subtract the maximal value of all computed log-likelihoods. This has the effect of multiplying the likelihood function by a constant."
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [],
"source": [
"like = np.exp(log_like - log_like.max())"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Now, we can make a contour plot by making a HoloViews `Image` and performing a `contours()` operation."
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.holoviews_exec.v0+json": "",
"text/html": [
"