{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# MCMC diagnostics\n", "\n", "**[Data set download](https://s3.amazonaws.com/bebi103.caltech.edu/data/singer_transcript_counts.csv)**\n", "\n", "
" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\n", "
\n", " \n", " Loading BokehJS ...\n", "
" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/javascript": [ "\n", "(function(root) {\n", " function now() {\n", " return new Date();\n", " }\n", "\n", " var force = true;\n", "\n", " if (typeof root._bokeh_onload_callbacks === \"undefined\" || force === true) {\n", " root._bokeh_onload_callbacks = [];\n", " root._bokeh_is_loading = undefined;\n", " }\n", "\n", " var JS_MIME_TYPE = 'application/javascript';\n", " var HTML_MIME_TYPE = 'text/html';\n", " var EXEC_MIME_TYPE = 'application/vnd.bokehjs_exec.v0+json';\n", " var CLASS_NAME = 'output_bokeh rendered_html';\n", "\n", " /**\n", " * Render data to the DOM node\n", " */\n", " function render(props, node) {\n", " var script = document.createElement(\"script\");\n", " node.appendChild(script);\n", " }\n", "\n", " /**\n", " * Handle when an output is cleared or removed\n", " */\n", " function handleClearOutput(event, handle) {\n", " var cell = handle.cell;\n", "\n", " var id = cell.output_area._bokeh_element_id;\n", " var server_id = cell.output_area._bokeh_server_id;\n", " // Clean up Bokeh references\n", " if (id != null && id in Bokeh.index) {\n", " Bokeh.index[id].model.document.clear();\n", " delete Bokeh.index[id];\n", " }\n", "\n", " if (server_id !== undefined) {\n", " // Clean up Bokeh references\n", " var cmd = \"from bokeh.io.state import curstate; print(curstate().uuid_to_server['\" + server_id + \"'].get_sessions()[0].document.roots[0]._id)\";\n", " cell.notebook.kernel.execute(cmd, {\n", " iopub: {\n", " output: function(msg) {\n", " var id = msg.content.text.trim();\n", " if (id in Bokeh.index) {\n", " Bokeh.index[id].model.document.clear();\n", " delete Bokeh.index[id];\n", " }\n", " }\n", " }\n", " });\n", " // Destroy server and session\n", " var cmd = \"import bokeh.io.notebook as ion; ion.destroy_server('\" + server_id + \"')\";\n", " cell.notebook.kernel.execute(cmd);\n", " }\n", " }\n", "\n", " /**\n", " * Handle when a new output is added\n", " */\n", " function handleAddOutput(event, handle) {\n", " var output_area = handle.output_area;\n", " var output = handle.output;\n", "\n", " // limit handleAddOutput to display_data with EXEC_MIME_TYPE content only\n", " if ((output.output_type != \"display_data\") || (!output.data.hasOwnProperty(EXEC_MIME_TYPE))) {\n", " return\n", " }\n", "\n", " var toinsert = output_area.element.find(\".\" + CLASS_NAME.split(' ')[0]);\n", "\n", " if (output.metadata[EXEC_MIME_TYPE][\"id\"] !== undefined) {\n", " toinsert[toinsert.length - 1].firstChild.textContent = output.data[JS_MIME_TYPE];\n", " // store reference to embed id on output_area\n", " output_area._bokeh_element_id = output.metadata[EXEC_MIME_TYPE][\"id\"];\n", " }\n", " if (output.metadata[EXEC_MIME_TYPE][\"server_id\"] !== undefined) {\n", " var bk_div = document.createElement(\"div\");\n", " bk_div.innerHTML = output.data[HTML_MIME_TYPE];\n", " var script_attrs = bk_div.children[0].attributes;\n", " for (var i = 0; i < script_attrs.length; i++) {\n", " toinsert[toinsert.length - 1].firstChild.setAttribute(script_attrs[i].name, script_attrs[i].value);\n", " }\n", " // store reference to server id on output_area\n", " output_area._bokeh_server_id = output.metadata[EXEC_MIME_TYPE][\"server_id\"];\n", " }\n", " }\n", "\n", " function register_renderer(events, OutputArea) {\n", "\n", " function append_mime(data, metadata, element) {\n", " // create a DOM node to render to\n", " var toinsert = this.create_output_subarea(\n", " metadata,\n", " CLASS_NAME,\n", " EXEC_MIME_TYPE\n", " );\n", " this.keyboard_manager.register_events(toinsert);\n", " // Render to node\n", " var props = {data: data, metadata: metadata[EXEC_MIME_TYPE]};\n", " render(props, toinsert[toinsert.length - 1]);\n", " element.append(toinsert);\n", " return toinsert\n", " }\n", "\n", " /* Handle when an output is cleared or removed */\n", " events.on('clear_output.CodeCell', handleClearOutput);\n", " events.on('delete.Cell', handleClearOutput);\n", "\n", " /* Handle when a new output is added */\n", " events.on('output_added.OutputArea', handleAddOutput);\n", "\n", " /**\n", " * Register the mime type and append_mime function with output_area\n", " */\n", " OutputArea.prototype.register_mime_type(EXEC_MIME_TYPE, append_mime, {\n", " /* Is output safe? */\n", " safe: true,\n", " /* Index of renderer in `output_area.display_order` */\n", " index: 0\n", " });\n", " }\n", "\n", " // register the mime type if in Jupyter Notebook environment and previously unregistered\n", " if (root.Jupyter !== undefined) {\n", " var events = require('base/js/events');\n", " var OutputArea = require('notebook/js/outputarea').OutputArea;\n", "\n", " if (OutputArea.prototype.mime_types().indexOf(EXEC_MIME_TYPE) == -1) {\n", " register_renderer(events, OutputArea);\n", " }\n", " }\n", "\n", " \n", " if (typeof (root._bokeh_timeout) === \"undefined\" || force === true) {\n", " root._bokeh_timeout = Date.now() + 5000;\n", " root._bokeh_failed_load = false;\n", " }\n", "\n", " var NB_LOAD_WARNING = {'data': {'text/html':\n", " \"
\\n\"+\n", " \"

\\n\"+\n", " \"BokehJS does not appear to have successfully loaded. If loading BokehJS from CDN, this \\n\"+\n", " \"may be due to a slow or bad network connection. Possible fixes:\\n\"+\n", " \"

\\n\"+\n", " \"\\n\"+\n", " \"\\n\"+\n", " \"from bokeh.resources import INLINE\\n\"+\n", " \"output_notebook(resources=INLINE)\\n\"+\n", " \"\\n\"+\n", " \"
\"}};\n", "\n", " function display_loaded() {\n", " var el = document.getElementById(\"1001\");\n", " if (el != null) {\n", " el.textContent = \"BokehJS is loading...\";\n", " }\n", " if (root.Bokeh !== undefined) {\n", " if (el != null) {\n", " el.textContent = \"BokehJS \" + root.Bokeh.version + \" successfully loaded.\";\n", " }\n", " } else if (Date.now() < root._bokeh_timeout) {\n", " setTimeout(display_loaded, 100)\n", " }\n", " }\n", "\n", "\n", " function run_callbacks() {\n", " try {\n", " root._bokeh_onload_callbacks.forEach(function(callback) {\n", " if (callback != null)\n", " callback();\n", " });\n", " } finally {\n", " delete root._bokeh_onload_callbacks\n", " }\n", " console.debug(\"Bokeh: all callbacks have finished\");\n", " }\n", "\n", " function load_libs(css_urls, js_urls, callback) {\n", " if (css_urls == null) css_urls = [];\n", " if (js_urls == null) js_urls = [];\n", "\n", " root._bokeh_onload_callbacks.push(callback);\n", " if (root._bokeh_is_loading > 0) {\n", " console.debug(\"Bokeh: BokehJS is being loaded, scheduling callback at\", now());\n", " return null;\n", " }\n", " if (js_urls == null || js_urls.length === 0) {\n", " run_callbacks();\n", " return null;\n", " }\n", " console.debug(\"Bokeh: BokehJS not loaded, scheduling load and callback at\", now());\n", " root._bokeh_is_loading = css_urls.length + js_urls.length;\n", "\n", " function on_load() {\n", " root._bokeh_is_loading--;\n", " if (root._bokeh_is_loading === 0) {\n", " console.debug(\"Bokeh: all BokehJS libraries/stylesheets loaded\");\n", " run_callbacks()\n", " }\n", " }\n", "\n", " function on_error() {\n", " console.error(\"failed to load \" + url);\n", " }\n", "\n", " for (var i = 0; i < css_urls.length; i++) {\n", " var url = css_urls[i];\n", " const element = document.createElement(\"link\");\n", " element.onload = on_load;\n", " element.onerror = on_error;\n", " element.rel = \"stylesheet\";\n", " element.type = \"text/css\";\n", " element.href = url;\n", " console.debug(\"Bokeh: injecting link tag for BokehJS stylesheet: \", url);\n", " document.body.appendChild(element);\n", " }\n", "\n", " for (var i = 0; i < js_urls.length; i++) {\n", " var url = js_urls[i];\n", " var element = document.createElement('script');\n", " element.onload = on_load;\n", " element.onerror = on_error;\n", " element.async = false;\n", " element.src = url;\n", " console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n", " document.head.appendChild(element);\n", " }\n", " };var element = document.getElementById(\"1001\");\n", " if (element == null) {\n", " console.error(\"Bokeh: ERROR: autoload.js configured with elementid '1001' but no matching script tag was found. \")\n", " return false;\n", " }\n", "\n", " function inject_raw_css(css) {\n", " const element = document.createElement(\"style\");\n", " element.appendChild(document.createTextNode(css));\n", " document.body.appendChild(element);\n", " }\n", "\n", " \n", " var js_urls = [\"https://cdn.pydata.org/bokeh/release/bokeh-1.4.0.min.js\", \"https://cdn.pydata.org/bokeh/release/bokeh-widgets-1.4.0.min.js\", \"https://cdn.pydata.org/bokeh/release/bokeh-tables-1.4.0.min.js\", \"https://cdn.pydata.org/bokeh/release/bokeh-gl-1.4.0.min.js\"];\n", " var css_urls = [];\n", " \n", "\n", " var inline_js = [\n", " function(Bokeh) {\n", " Bokeh.set_log_level(\"info\");\n", " },\n", " function(Bokeh) {\n", " \n", " \n", " }\n", " ];\n", "\n", " function run_inline_js() {\n", " \n", " if (root.Bokeh !== undefined || force === true) {\n", " \n", " for (var i = 0; i < inline_js.length; i++) {\n", " inline_js[i].call(root, root.Bokeh);\n", " }\n", " if (force === true) {\n", " display_loaded();\n", " }} else if (Date.now() < root._bokeh_timeout) {\n", " setTimeout(run_inline_js, 100);\n", " } else if (!root._bokeh_failed_load) {\n", " console.log(\"Bokeh: BokehJS failed to load within specified timeout.\");\n", " root._bokeh_failed_load = true;\n", " } else if (force !== true) {\n", " var cell = $(document.getElementById(\"1001\")).parents('.cell').data().cell;\n", " cell.output_area.append_execute_result(NB_LOAD_WARNING)\n", " }\n", "\n", " }\n", "\n", " if (root._bokeh_is_loading === 0) {\n", " console.debug(\"Bokeh: BokehJS loaded, going straight to plotting\");\n", " run_inline_js();\n", " } else {\n", " load_libs(css_urls, js_urls, function() {\n", " console.debug(\"Bokeh: BokehJS plotting callback run at\", now());\n", " run_inline_js();\n", " });\n", " }\n", "}(window));" ], "application/vnd.bokehjs_load.v0+json": "\n(function(root) {\n function now() {\n return new Date();\n }\n\n var force = true;\n\n if (typeof root._bokeh_onload_callbacks === \"undefined\" || force === true) {\n root._bokeh_onload_callbacks = [];\n root._bokeh_is_loading = undefined;\n }\n\n \n\n \n if (typeof (root._bokeh_timeout) === \"undefined\" || force === true) {\n root._bokeh_timeout = Date.now() + 5000;\n root._bokeh_failed_load = false;\n }\n\n var NB_LOAD_WARNING = {'data': {'text/html':\n \"
\\n\"+\n \"

\\n\"+\n \"BokehJS does not appear to have successfully loaded. If loading BokehJS from CDN, this \\n\"+\n \"may be due to a slow or bad network connection. Possible fixes:\\n\"+\n \"

\\n\"+\n \"\\n\"+\n \"\\n\"+\n \"from bokeh.resources import INLINE\\n\"+\n \"output_notebook(resources=INLINE)\\n\"+\n \"\\n\"+\n \"
\"}};\n\n function display_loaded() {\n var el = document.getElementById(\"1001\");\n if (el != null) {\n el.textContent = \"BokehJS is loading...\";\n }\n if (root.Bokeh !== undefined) {\n if (el != null) {\n el.textContent = \"BokehJS \" + root.Bokeh.version + \" successfully loaded.\";\n }\n } else if (Date.now() < root._bokeh_timeout) {\n setTimeout(display_loaded, 100)\n }\n }\n\n\n function run_callbacks() {\n try {\n root._bokeh_onload_callbacks.forEach(function(callback) {\n if (callback != null)\n callback();\n });\n } finally {\n delete root._bokeh_onload_callbacks\n }\n console.debug(\"Bokeh: all callbacks have finished\");\n }\n\n function load_libs(css_urls, js_urls, callback) {\n if (css_urls == null) css_urls = [];\n if (js_urls == null) js_urls = [];\n\n root._bokeh_onload_callbacks.push(callback);\n if (root._bokeh_is_loading > 0) {\n console.debug(\"Bokeh: BokehJS is being loaded, scheduling callback at\", now());\n return null;\n }\n if (js_urls == null || js_urls.length === 0) {\n run_callbacks();\n return null;\n }\n console.debug(\"Bokeh: BokehJS not loaded, scheduling load and callback at\", now());\n root._bokeh_is_loading = css_urls.length + js_urls.length;\n\n function on_load() {\n root._bokeh_is_loading--;\n if (root._bokeh_is_loading === 0) {\n console.debug(\"Bokeh: all BokehJS libraries/stylesheets loaded\");\n run_callbacks()\n }\n }\n\n function on_error() {\n console.error(\"failed to load \" + url);\n }\n\n for (var i = 0; i < css_urls.length; i++) {\n var url = css_urls[i];\n const element = document.createElement(\"link\");\n element.onload = on_load;\n element.onerror = on_error;\n element.rel = \"stylesheet\";\n element.type = \"text/css\";\n element.href = url;\n console.debug(\"Bokeh: injecting link tag for BokehJS stylesheet: \", url);\n document.body.appendChild(element);\n }\n\n for (var i = 0; i < js_urls.length; i++) {\n var url = js_urls[i];\n var element = document.createElement('script');\n element.onload = on_load;\n element.onerror = on_error;\n element.async = false;\n element.src = url;\n console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n document.head.appendChild(element);\n }\n };var element = document.getElementById(\"1001\");\n if (element == null) {\n console.error(\"Bokeh: ERROR: autoload.js configured with elementid '1001' but no matching script tag was found. \")\n return false;\n }\n\n function inject_raw_css(css) {\n const element = document.createElement(\"style\");\n element.appendChild(document.createTextNode(css));\n document.body.appendChild(element);\n }\n\n \n var js_urls = [\"https://cdn.pydata.org/bokeh/release/bokeh-1.4.0.min.js\", \"https://cdn.pydata.org/bokeh/release/bokeh-widgets-1.4.0.min.js\", \"https://cdn.pydata.org/bokeh/release/bokeh-tables-1.4.0.min.js\", \"https://cdn.pydata.org/bokeh/release/bokeh-gl-1.4.0.min.js\"];\n var css_urls = [];\n \n\n var inline_js = [\n function(Bokeh) {\n Bokeh.set_log_level(\"info\");\n },\n function(Bokeh) {\n \n \n }\n ];\n\n function run_inline_js() {\n \n if (root.Bokeh !== undefined || force === true) {\n \n for (var i = 0; i < inline_js.length; i++) {\n inline_js[i].call(root, root.Bokeh);\n }\n if (force === true) {\n display_loaded();\n }} else if (Date.now() < root._bokeh_timeout) {\n setTimeout(run_inline_js, 100);\n } else if (!root._bokeh_failed_load) {\n console.log(\"Bokeh: BokehJS failed to load within specified timeout.\");\n root._bokeh_failed_load = true;\n } else if (force !== true) {\n var cell = $(document.getElementById(\"1001\")).parents('.cell').data().cell;\n cell.output_area.append_execute_result(NB_LOAD_WARNING)\n }\n\n }\n\n if (root._bokeh_is_loading === 0) {\n console.debug(\"Bokeh: BokehJS loaded, going straight to plotting\");\n run_inline_js();\n } else {\n load_libs(css_urls, js_urls, function() {\n console.debug(\"Bokeh: BokehJS plotting callback run at\", now());\n run_inline_js();\n });\n }\n}(window));" }, "metadata": {}, "output_type": "display_data" } ], "source": [ "import numpy as np\n", "import pandas as pd\n", "\n", "import cmdstanpy\n", "import arviz as az\n", "\n", "import bebi103\n", "import bokeh_catplot\n", "\n", "import bokeh.io\n", "import bokeh.plotting\n", "bokeh.io.output_notebook()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "In previous lessons, you have seen that we can sample out of arbitrary probability distributions, most notably posterior probability distributions in the context of Bayesian inference, using Markov chain Monte Carlo. However, there are a few questions we need to answer to make sure our MCMC samplers are in fact sampling the target distribution.\n", "\n", "1. Have we achieved stationarity? That is, have the chains sampled enough that we are effectively getting independent samples out of the target distribution?\n", "2. Can the chains access all areas of parameter space?\n", "3. Have we taken enough samples to get a good picture of the posterior?\n", "\n", "There are diagnostic checks we can do to address these questions, and these checks are the topic of this lesson. " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## The data set\n", "\n", "As we set out to learn about MCMC diagnostics, we will again use the [data set](https://s3.amazonaws.com/bebi103.caltech.edu/data/singer_transcript_counts.csv) from [Singer, et al.](https://doi.org/10.1016/j.molcel.2014.06.029) consisting of mRNA transcript counts in cells from single molecule FISH experiments. We'll start by loading in the data set. We will work with the Rest data, which I will go ahead and pull out as a Numpy array. I'll make a quick plot of the ECDF as a reminder of the data set." ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\n", "\n", "\n", "\n", "\n", "\n", "
\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/javascript": [ "(function(root) {\n", " function embed_document(root) {\n", " \n", " var docs_json = {\"01226542-84ca-416c-91f9-ed48ea41e828\":{\"roots\":{\"references\":[{\"attributes\":{\"below\":[{\"id\":\"1011\",\"type\":\"LinearAxis\"}],\"center\":[{\"id\":\"1015\",\"type\":\"Grid\"},{\"id\":\"1020\",\"type\":\"Grid\"},{\"id\":\"1047\",\"type\":\"Legend\"}],\"left\":[{\"id\":\"1016\",\"type\":\"LinearAxis\"}],\"plot_height\":300,\"plot_width\":400,\"renderers\":[{\"id\":\"1038\",\"type\":\"GlyphRenderer\"}],\"title\":{\"id\":\"1041\",\"type\":\"Title\"},\"toolbar\":{\"id\":\"1027\",\"type\":\"Toolbar\"},\"x_range\":{\"id\":\"1003\",\"type\":\"DataRange1d\"},\"x_scale\":{\"id\":\"1007\",\"type\":\"LinearScale\"},\"y_range\":{\"id\":\"1005\",\"type\":\"DataRange1d\"},\"y_scale\":{\"id\":\"1009\",\"type\":\"LinearScale\"}},\"id\":\"1002\",\"subtype\":\"Figure\",\"type\":\"Plot\"},{\"attributes\":{},\"id\":\"1017\",\"type\":\"BasicTicker\"},{\"attributes\":{\"dimension\":1,\"ticker\":{\"id\":\"1017\",\"type\":\"BasicTicker\"}},\"id\":\"1020\",\"type\":\"Grid\"},{\"attributes\":{\"label\":{\"value\":\" \"},\"renderers\":[{\"id\":\"1038\",\"type\":\"GlyphRenderer\"}]},\"id\":\"1048\",\"type\":\"LegendItem\"},{\"attributes\":{\"fill_alpha\":{\"value\":0.1},\"fill_color\":{\"value\":\"#1f77b4\"},\"line_alpha\":{\"value\":0.1},\"line_color\":{\"value\":\"#1f77b4\"},\"x\":{\"field\":\"x\"},\"y\":{\"field\":\"__ECDF\"}},\"id\":\"1037\",\"type\":\"Circle\"},{\"attributes\":{\"callback\":null},\"id\":\"1005\",\"type\":\"DataRange1d\"},{\"attributes\":{\"source\":{\"id\":\"1034\",\"type\":\"ColumnDataSource\"}},\"id\":\"1039\",\"type\":\"CDSView\"},{\"attributes\":{},\"id\":\"1007\",\"type\":\"LinearScale\"},{\"attributes\":{\"items\":[{\"id\":\"1048\",\"type\":\"LegendItem\"}],\"visible\":false},\"id\":\"1047\",\"type\":\"Legend\"},{\"attributes\":{\"fill_color\":{\"value\":\"#1f77b3\"},\"line_color\":{\"value\":\"#1f77b3\"},\"x\":{\"field\":\"x\"},\"y\":{\"field\":\"__ECDF\"}},\"id\":\"1036\",\"type\":\"Circle\"},{\"attributes\":{},\"id\":\"1044\",\"type\":\"BasicTickFormatter\"},{\"attributes\":{\"callback\":null},\"id\":\"1003\",\"type\":\"DataRange1d\"},{\"attributes\":{\"data_source\":{\"id\":\"1034\",\"type\":\"ColumnDataSource\"},\"glyph\":{\"id\":\"1036\",\"type\":\"Circle\"},\"hover_glyph\":null,\"muted_glyph\":null,\"nonselection_glyph\":{\"id\":\"1037\",\"type\":\"Circle\"},\"selection_glyph\":null,\"view\":{\"id\":\"1039\",\"type\":\"CDSView\"}},\"id\":\"1038\",\"type\":\"GlyphRenderer\"},{\"attributes\":{\"ticker\":{\"id\":\"1012\",\"type\":\"BasicTicker\"}},\"id\":\"1015\",\"type\":\"Grid\"},{\"attributes\":{\"text\":\"\"},\"id\":\"1041\",\"type\":\"Title\"},{\"attributes\":{},\"id\":\"1009\",\"type\":\"LinearScale\"},{\"attributes\":{},\"id\":\"1021\",\"type\":\"PanTool\"},{\"attributes\":{},\"id\":\"1056\",\"type\":\"UnionRenderers\"},{\"attributes\":{\"active_drag\":\"auto\",\"active_inspect\":\"auto\",\"active_multi\":null,\"active_scroll\":\"auto\",\"active_tap\":\"auto\",\"tools\":[{\"id\":\"1021\",\"type\":\"PanTool\"},{\"id\":\"1022\",\"type\":\"WheelZoomTool\"},{\"id\":\"1023\",\"type\":\"BoxZoomTool\"},{\"id\":\"1024\",\"type\":\"SaveTool\"},{\"id\":\"1025\",\"type\":\"ResetTool\"},{\"id\":\"1026\",\"type\":\"HelpTool\"}]},\"id\":\"1027\",\"type\":\"Toolbar\"},{\"attributes\":{\"axis_label\":\"ECDF\",\"formatter\":{\"id\":\"1042\",\"type\":\"BasicTickFormatter\"},\"ticker\":{\"id\":\"1017\",\"type\":\"BasicTicker\"}},\"id\":\"1016\",\"type\":\"LinearAxis\"},{\"attributes\":{},\"id\":\"1022\",\"type\":\"WheelZoomTool\"},{\"attributes\":{\"overlay\":{\"id\":\"1046\",\"type\":\"BoxAnnotation\"}},\"id\":\"1023\",\"type\":\"BoxZoomTool\"},{\"attributes\":{},\"id\":\"1024\",\"type\":\"SaveTool\"},{\"attributes\":{},\"id\":\"1042\",\"type\":\"BasicTickFormatter\"},{\"attributes\":{},\"id\":\"1025\",\"type\":\"ResetTool\"},{\"attributes\":{\"bottom_units\":\"screen\",\"fill_alpha\":{\"value\":0.5},\"fill_color\":{\"value\":\"lightgrey\"},\"left_units\":\"screen\",\"level\":\"overlay\",\"line_alpha\":{\"value\":1.0},\"line_color\":{\"value\":\"black\"},\"line_dash\":[4,4],\"line_width\":{\"value\":2},\"render_mode\":\"css\",\"right_units\":\"screen\",\"top_units\":\"screen\"},\"id\":\"1046\",\"type\":\"BoxAnnotation\"},{\"attributes\":{\"axis_label\":\"transcript count\",\"formatter\":{\"id\":\"1044\",\"type\":\"BasicTickFormatter\"},\"ticker\":{\"id\":\"1012\",\"type\":\"BasicTicker\"}},\"id\":\"1011\",\"type\":\"LinearAxis\"},{\"attributes\":{},\"id\":\"1012\",\"type\":\"BasicTicker\"},{\"attributes\":{},\"id\":\"1026\",\"type\":\"HelpTool\"},{\"attributes\":{},\"id\":\"1057\",\"type\":\"Selection\"},{\"attributes\":{\"callback\":null,\"data\":{\"__ECDF\":{\"__ndarray__\":\"hxtuuOGGuz/rAFm5OkDmP0geeeSRR94/ynxIdzIf0j+vZ0nQ61nSP+ecc84559w/LLDAAgss4D/Q61kS9HrWPzmO4ziO4+g/3cl8SHcyvz+ycnWArFzNP0geeeSRR84/0OtZEvR6xj99SHcyH9LNP58lQa9nSeA/P/30008/7T8xbV8oTNvXP31IdzIf0u0/4S1iM3iL6D9walT8mxq1PzfccMMNN9w/BhZYYIEF5j8WWGCBBRbYP+SRRx555ME/zYd0J/Mh3T9FE0000UTDPwyFaftCYdo/5JFHHnnk4T+21lprrbXWPzFtXyhM2+c/6U7mQ7qT6T9fKEzbFwrTP2IzeIvYDN4/cGpU/JsaxT9Br2dJ0OvpP/FvalT8m9o/O0BWrg6QxT8avEVsBm/hP4888sgjj+w/wKlR8W9q5D9J0OtZEvTqP42Kf1Oj4u8/snJ1gKxc3T/99NNPP/3kP3bZZZdddtk/BhZYYIEFpj+0JOj1LAnqP6wDZOXqAOk/T+ZDupP54D+bwVvEZvDWPy0Jej1Lgt4/r2dJ0OtZ4j8Rm8FbxGbgP4QQQgghhOA/Zpdddtllxz9/+umnn37qPx555JFHHuk/RRNNNNFEsz+Lf1Oj4t/UP4QQQgghhKA/HMdxHMdxvD8xbV8oTNvHP4QQQgghhLA/HMdxHMdxzD/XWmuttdbaPwAAAAAAAPA/8W9qVPyb6j+HG2644YbrP1522WWXXeY/hWn7QmHa7j8Q6U7mQ7rDPwfIytUBsuI/9dNPP/300z/SncyHdCfjP6WUUkoppeQ/EvR6lgS9zj+vZ0nQ61nCP5HuZD6kO+k/O0BWrg6Q5T+8RWwGbxHbPwYWWGCBBZY/oH766aef7j8YCtP2hcLkP4wxxhhjjOE/2r5QmLYvpD96PUuCXs/iP4CsXB0gK9c/SB555JFH7j/Q61kS9HrmPxL0epYEvd4/snJ1gKxcjT+EEEIIIYTQP6EwbV8oTNs/XMRm8BaxuT9VVVVVVVXVPztAVq4OkNU/w7R9oTBt3z/EZvAWsRnsPy0Jej1Lgu4/11prrbXW6j/1008//fTjP2Tl6gBZueo/+0Jh2r5Q2D/avlCYti/UPzfccMMNN+w/3cl8SHcyzz+8RWwGbxHrPw433HDDDec/ICtXB8jK1T/xb2pU/Ju6P/qQ7mQ+pOs/avtCYdq+0D+ycnWArFy9P6Pi39So+Oc/vEVsBm8Ryz9cxGbwFrHZP7733nvvvec/T+ZDupP50D//pkbFv6nhP2hJ0OtZEuQ/Kv5NjYp/0z+HG2644YbLP6211lprreU/lVJKKaWU0j/CW8Rm8BbhP5HuZD6kO8k/GrxFbAZvsT8GFlhggQXGPyLdyXxId+I/Qa9nSdDr2T/AqVHxb2rUP4CsXB0gK+c/snJ1gKxc7T9P5kO6k/nAP/tCYdq+UMg/qlHxb2pU7D+5OkBWrg7QPyXo9SwJeu0/alT8mxoV7z+vZ0nQ61miP0geeeSRR74/snJ1gKxcnT800UQTTTTRP6iffvrpp98/J5poookm6j+5OkBWrg7APzTRRBNNNOE/4S1iM3iL2D9iM3iL2AzuP9q+UJi2L+Q/FlhggQUW6D8cx3Ecx3HcPzIf0p3Mh+Q/7bLLLrvs4j+llFJKKaXUP18oTNsXCuM/r2dJ0OtZsj/j39So+DflP++999577+0/MW1fKEzbtz8S9HqWBL3uP1cHyMrVAeI/8yHdyXxI5z/3hcK0faHgP1A//fTTT+8/w7R9oTBt7z9ml1122WXXP2r7QmHavuA/ic3gLWIz6D8GFlhggQXWP0Nh2r5QmOY/HMdxHMdx7D+XXXbZZZfdP7JydYCsXK0/xhhjjDHGuD/KfEh3Mh/iPzUq/k2Niu8/ICtXB8jK5T+on3766afvP2aXXXbZZec/XMRm8Bax6T/avlCYti/EPxq8RWwGb8E/snJ1gKxcbT+hMG1fKEzrPwYWWGCBBbY/ttZaa6215j/dyXxIdzLvP/tCYdq+UOg/l1122WWX7T8EZOXqAFnpP2wGbxGbwes/snJ1gKxcfT8avEVsBm/RP1Oj4t/UqOg/ej1Lgl7Pwj+HG2644YbbP31IdzIf0t0/p0bFv6lR4T9NNNFEE03kP8YYY4wxxsg/eIvYDN4i5j9VVVVVVVXlPz3yyCOPPOI/dSfzId3J7D+EEEIIIYTAP0UTTTTRROM/S4Jez5Kg1z8K0/aFwrTtP5kP6U7mQ+o/RRNNNNFE0z+bwVvEZvDGP6WUUkoppcQ/EOlO5kO60z/dyXxIdzKvP8jK1QGycuU//6ZGxb+p0T+Nin9To+LfP5Og17Mk6OU/33vvvffe6z/Nh3Qn8yHtP+ecc84558w/m8FbxGbwtj9S8W9qVPzLP7iIzeAtYuM/+N5777333j8q/k2Nin/jP1oS9HqWBO0/bAZvEZvB2z8GFlhggQWGPxsV/6ZGxe8/DIVp+0Jh6j/GGGOMMcbYP1zEZvAWsck/L7vssssu6z9uuOGGG27oP51zzjnnnOM/xhhjjDHG6D8oTNsXCtPmPyeaaKKJJto/cGpU/Jsa1T9S8W9qVPzbP1zEZvAWsak/ArJydYCs3D+VUkoppZTiP+ecc8455+w/hxtuuOGGqz9S8W9qVPzrPzFtXyhM26c/ej1Lgl7P0j+on3766afPP+SRRx555NE/nyVBr2dJ0D+vZ0nQ61mSP93JfEh3Mt8/rANk5eoA2T8CsnJ1gKzsP4t/U6Pi3+Q/zjnnnHPO6T/ZDN4iNoPnP9Wo+Dc1Ku4/3HDDDTfc4D8nmmiiiSbKP7k6QFauDuA/2r5QmLYvtD+6k/mQ7mTuPxSm7QuFaes/6wBZuTpA1j/xb2pU/JvKP3BqVPybGuU/XMRm8BaxmT+R7mQ+pDvZPxDpTuZDuuM/+N5777337j9yHMdxHMfhP5vBW8Rm8OY/S4Jez5Kg5z+CXs+SoNfjP3bZZZddduk/\",\"dtype\":\"float64\",\"shape\":[279]},\"__dummy_cat\":[\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \"],\"__label\":[\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \"],\"index\":[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278],\"x\":[34,91,70,54,54,68,74,60,96,35,50,51,43,50,74,125,62,130,95,31,67,90,62,39,68,40,65,78,60,94,99,55,69,41,102,65,42,76,114,84,106,182,68,86,63,24,103,96,75,60,70,79,74,74,44,104,97,30,58,17,34,44,28,49,65,246,104,108,91,144,40,80,57,82,85,51,39,98,88,65,13,140,85,76,21,80,60,137,91,70,12,53,65,33,59,59,72,110,138,105,83,104,62,57,110,51,106,92,59,33,108,53,34,94,48,64,93,53,77,83,56,48,88,54,75,46,29,42,79,64,57,92,125,37,44,112,52,125,152,18,34,16,53,72,103,35,75,62,134,83,94,67,84,80,57,80,29,87,130,32,142,78,92,74,155,159,61,74,94,59,91,112,68,27,32,78,162,89,162,92,100,40,37,5,107,31,91,153,94,129,98,108,8,53,95,39,65,68,75,83,45,90,87,78,117,36,82,61,129,103,55,43,40,56,27,87,53,72,89,109,124,49,31,48,82,70,82,121,65,11,170,103,62,46,106,94,82,95,91,64,58,66,26,67,79,118,26,109,25,54,51,53,52,12,70,62,116,85,101,92,134,74,46,73,30,137,107,59,46,86,15,62,82,148,77,91,92,82,98]},\"selected\":{\"id\":\"1057\",\"type\":\"Selection\"},\"selection_policy\":{\"id\":\"1056\",\"type\":\"UnionRenderers\"}},\"id\":\"1034\",\"type\":\"ColumnDataSource\"}],\"root_ids\":[\"1002\"]},\"title\":\"Bokeh Application\",\"version\":\"1.4.0\"}};\n", " var render_items = [{\"docid\":\"01226542-84ca-416c-91f9-ed48ea41e828\",\"roots\":{\"1002\":\"87304e6c-c05f-48fb-904a-9a857b3db080\"}}];\n", " root.Bokeh.embed.embed_items_notebook(docs_json, render_items);\n", "\n", " }\n", " if (root.Bokeh !== undefined) {\n", " embed_document(root);\n", " } else {\n", " var attempts = 0;\n", " var timer = setInterval(function(root) {\n", " if (root.Bokeh !== undefined) {\n", " clearInterval(timer);\n", " embed_document(root);\n", " } else {\n", " attempts++;\n", " if (attempts > 100) {\n", " clearInterval(timer);\n", " console.log(\"Bokeh: ERROR: Unable to run BokehJS code because BokehJS library is missing\");\n", " }\n", " }\n", " }, 10, root)\n", " }\n", "})(window);" ], "application/vnd.bokehjs_exec.v0+json": "" }, "metadata": { "application/vnd.bokehjs_exec.v0+json": { "id": "1002" } }, "output_type": "display_data" } ], "source": [ "df = pd.read_csv('../data/singer_transcript_counts.csv', comment='#')\n", "n = df['Rest'].values\n", "\n", "bokeh.io.show(bokeh_catplot.ecdf(n, x_axis_label='transcript count'))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### The model\n", "\n", "As we have [previously discussed](http://bebi103.caltech.edu.s3-website-us-east-1.amazonaws.com/2020b/content/lessons/lesson_04/parameter_estimation_with_mcmc.html#Building-a-generative-model), the transcript counts are Negative Binomially distributed under a model for bursty gene expression. We built the following generative model.\n", "\n", "\\begin{align}\n", "&\\alpha \\sim \\text{LogNorm}(0,2), \\\\[1em]\n", "&b \\sim \\text{LogNorm}(2, 3), \\\\[1em]\n", "&\\beta = 1/b,\\\\[1em]\n", "&n_i \\sim \\text{NegBinom}(\\alpha, \\beta) \\;\\forall i.\n", "\\end{align}\n", "\n", "Here, $\\alpha$ is the frequency of bursts in gene expression and $b$ is the size of the bursts. We do a change of variables to convert $b$ to $\\beta$, as required for parametrization with Stan. The Stan code for this model is\n", "\n", "```stan\n", "data {\n", " int N;\n", " int n[N];\n", "}\n", "\n", "\n", "parameters {\n", " real alpha;\n", " real b;\n", "}\n", "\n", "\n", "transformed parameters {\n", " real beta_ = 1.0 / b;\n", "}\n", "\n", "\n", "model {\n", " // Priors\n", " alpha ~ lognormal(0.0, 2.0);\n", " b ~ lognormal(2.0, 3.0);\n", "\n", " // Likelihood\n", " n ~ neg_binomial(alpha, beta_);\n", "}\n", "```\n", "\n", "We will compile this model so we have it ready for use." ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "INFO:cmdstanpy:stan to c++ (/Users/bois/Dropbox/git/bebi103_course/2020/b/content/lessons/lesson_06/bursty_expression.hpp)\n", "INFO:cmdstanpy:compiling c++\n", "INFO:cmdstanpy:compiled model file: /Users/bois/Dropbox/git/bebi103_course/2020/b/content/lessons/lesson_06/bursty_expression\n" ] } ], "source": [ "sm = cmdstanpy.CmdStanModel(stan_file='bursty_expression.stan')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Let's get some samples to work with. We will seed the random number generator for reproducibility purposes." ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "INFO:cmdstanpy:start chain 1\n", "INFO:cmdstanpy:start chain 2\n", "INFO:cmdstanpy:finish chain 1\n", "INFO:cmdstanpy:start chain 3\n", "INFO:cmdstanpy:finish chain 2\n", "INFO:cmdstanpy:start chain 4\n", "INFO:cmdstanpy:finish chain 3\n", "INFO:cmdstanpy:finish chain 4\n" ] } ], "source": [ "samples = sm.sample(data=dict(N=len(n), n=n), seed=29234)\n", "samples = az.from_cmdstanpy(posterior=samples)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Diagnostics for any MCMC sampler\n", "\n", "We will first investigate diagnostics that apply to any MCMC sampler, not just Hamiltonian Monte Carlo samplers like Stan uses." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### The Gelman-Rubin R-hat statistic\n", "\n", "The **Gelman-Rubin R-hat statistic** is a useful metric to determine if we have achieved stationarity with our chains. The idea is that we run multiple chains in parallel (at least four). For a given parameter, we then compute the variance in the samples *between* the chains, and then the variance of samples *within* the chains. The ratio of these two is the Gelman-Rubin R-hat statistic, usually denoted as $\\hat{R}$, and we compute $\\hat{R}$ for each chain.\n", "\n", "\\begin{align}\n", "\\hat{R} = \\frac{\\text{variance between chains}}{\\text{variance within chains}}.\n", "\\end{align}\n", "\n", "The value of $\\hat{R}$ approaches unity if the chains are properly sampling the target distribution because the chains should be identical in their sampling of the posterior if they have all reached the limiting distribution. As a rule of thumb, recommended by [Vehtari, et al.](https://arxiv.org/abs/1903.08008), the value of $\\hat{R}$ should be less than 1.01. There are more details involved in calculation of $\\hat{R}$, and you may read about them in the Vehtari, et al. paper.\n", "\n", "ArviZ automatically computes $\\hat{R}$ using state-of-the-art rank normalization techniques (published in Vehtari, et al.)." ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "\n", "Dimensions: ()\n", "Data variables:\n", " alpha float64 1.006\n", " b float64 1.011\n", " beta_ float64 1.01" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "az.rhat(samples)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We see that `Rhat` for each of the three parameters is 1.01, satisfying the rule of thumb.\n", "\n", "If we want to see a quick summary of the results of MCMC, including mean parameter values, we can use `az.summary()`." ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
meansdhpd_3%hpd_97%mcse_meanmcse_sdess_meaness_sdess_bulkess_tailr_hat
alpha4.5080.3953.7585.2230.0140.010820.0817.0819.0832.01.01
b16.7621.55214.02419.7750.0550.039800.0792.0806.0769.01.01
beta_0.0600.0060.0500.0710.0000.000806.0803.0806.0769.01.01
\n", "
" ], "text/plain": [ " mean sd hpd_3% hpd_97% mcse_mean mcse_sd ess_mean ess_sd \\\n", "alpha 4.508 0.395 3.758 5.223 0.014 0.010 820.0 817.0 \n", "b 16.762 1.552 14.024 19.775 0.055 0.039 800.0 792.0 \n", "beta_ 0.060 0.006 0.050 0.071 0.000 0.000 806.0 803.0 \n", "\n", " ess_bulk ess_tail r_hat \n", "alpha 819.0 832.0 1.01 \n", "b 806.0 769.0 1.01 \n", "beta_ 806.0 769.0 1.01 " ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "az.summary(samples)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We will discuss what some of these other statistics mean aside from $\\hat{R}$ momentarily.\n", "\n", "To see examples where they have not converged, we will sample again, but only allow the chains seven warm-up steps." ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "INFO:cmdstanpy:start chain 1\n", "INFO:cmdstanpy:start chain 2\n", "INFO:cmdstanpy:finish chain 2\n", "INFO:cmdstanpy:start chain 3\n", "INFO:cmdstanpy:finish chain 1\n", "INFO:cmdstanpy:start chain 4\n", "INFO:cmdstanpy:finish chain 3\n", "INFO:cmdstanpy:finish chain 4\n" ] }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
meansdhpd_3%hpd_97%mcse_meanmcse_sdess_meaness_sdess_bulkess_tailr_hat
alpha5.4053.3621.47710.1401.6231.2364.04.04.011.03.88
b21.40113.6816.48646.9926.6945.1104.04.05.07.04.13
beta_0.0680.0380.0200.1220.0180.0144.04.05.011.03.02
\n", "
" ], "text/plain": [ " mean sd hpd_3% hpd_97% mcse_mean mcse_sd ess_mean ess_sd \\\n", "alpha 5.405 3.362 1.477 10.140 1.623 1.236 4.0 4.0 \n", "b 21.401 13.681 6.486 46.992 6.694 5.110 4.0 4.0 \n", "beta_ 0.068 0.038 0.020 0.122 0.018 0.014 4.0 4.0 \n", "\n", " ess_bulk ess_tail r_hat \n", "alpha 4.0 11.0 3.88 \n", "b 5.0 7.0 4.13 \n", "beta_ 5.0 11.0 3.02 " ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "samples_limited_warmup = sm.sample(\n", " data=dict(N=len(n), n=n), warmup_iters=7, sampling_iters=1000, seed=29234\n", ")\n", "samples_limited_warmup = az.from_cmdstanpy(samples_limited_warmup)\n", "\n", "az.summary(samples_limited_warmup)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now, the $\\hat{R}$ values are large; the chains have not converged to the limiting distribution. Note also that the mean values of $\\alpha$ and $b$ are not the same as for the properly warmed-up sampler. This emphasizes the point that **warm-up is crucial** for performance of the sampler. If you see $\\hat{R}$ values that are too large, you may be able to fix it by having the walkers take more warm-up steps.\n", "\n", "We can also see the poor mixing of the chains by looking at the trace plot." ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\n", "\n", "\n", "\n", "\n", "\n", "
\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/javascript": [ "(function(root) {\n", " function embed_document(root) {\n", " \n", " var docs_json = {\"ac6669b2-e49f-4fea-b1c0-6df540000bb0\":{\"roots\":{\"references\":[{\"attributes\":{\"children\":[{\"id\":\"1250\",\"type\":\"ToolbarBox\"},{\"id\":\"1248\",\"type\":\"GridBox\"}]},\"id\":\"1251\",\"type\":\"Column\"},{\"attributes\":{\"axis_label\":\"step\",\"formatter\":{\"id\":\"1220\",\"type\":\"BasicTickFormatter\"},\"ticker\":{\"id\":\"1122\",\"type\":\"BasicTicker\"}},\"id\":\"1121\",\"type\":\"LinearAxis\"},{\"attributes\":{\"active_drag\":\"auto\",\"active_inspect\":\"auto\",\"active_multi\":null,\"active_scroll\":\"auto\",\"active_tap\":\"auto\",\"tools\":[{\"id\":\"1131\",\"type\":\"PanTool\"},{\"id\":\"1132\",\"type\":\"WheelZoomTool\"},{\"id\":\"1133\",\"type\":\"BoxZoomTool\"},{\"id\":\"1134\",\"type\":\"SaveTool\"},{\"id\":\"1135\",\"type\":\"ResetTool\"},{\"id\":\"1136\",\"type\":\"HelpTool\"}]},\"id\":\"1137\",\"type\":\"Toolbar\"},{\"attributes\":{\"line_color\":\"#d62628\",\"line_width\":2,\"x\":{\"field\":\"x\"},\"y\":{\"field\":\"y\"}},\"id\":\"1212\",\"type\":\"Line\"},{\"attributes\":{\"line_color\":\"#2ba02b\",\"line_width\":2,\"x\":{\"field\":\"x\"},\"y\":{\"field\":\"y\"}},\"id\":\"1207\",\"type\":\"Line\"},{\"attributes\":{\"source\":{\"id\":\"1159\",\"type\":\"ColumnDataSource\"}},\"id\":\"1163\",\"type\":\"CDSView\"},{\"attributes\":{\"axis_label\":\"step\",\"formatter\":{\"id\":\"1236\",\"type\":\"BasicTickFormatter\"},\"ticker\":{\"id\":\"1174\",\"type\":\"BasicTicker\"}},\"id\":\"1173\",\"type\":\"LinearAxis\"},{\"attributes\":{\"data_source\":{\"id\":\"1196\",\"type\":\"ColumnDataSource\"},\"glyph\":{\"id\":\"1197\",\"type\":\"Line\"},\"hover_glyph\":null,\"muted_glyph\":null,\"nonselection_glyph\":{\"id\":\"1198\",\"type\":\"Line\"},\"selection_glyph\":null,\"view\":{\"id\":\"1200\",\"type\":\"CDSView\"}},\"id\":\"1199\",\"type\":\"GlyphRenderer\"},{\"attributes\":{},\"id\":\"1171\",\"type\":\"LinearScale\"},{\"attributes\":{\"line_alpha\":0.1,\"line_color\":\"#1f77b4\",\"line_width\":2,\"x\":{\"field\":\"x\"},\"y\":{\"field\":\"y\"}},\"id\":\"1203\",\"type\":\"Line\"},{\"attributes\":{\"callback\":null,\"data\":{\"x\":[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,295,296,297,298,299,300,301,302,303,304,305,306,307,308,309,310,311,312,313,314,315,316,317,318,319,320,321,322,323,324,325,326,327,328,329,330,331,332,333,334,335,336,337,338,339,340,341,342,343,344,345,346,347,348,349,350,351,352,353,354,355,356,357,358,359,360,361,362,363,364,365,366,367,368,369,370,371,372,373,374,375,376,377,378,379,380,381,382,383,384,385,386,387,388,389,390,391,392,393,394,395,396,397,398,399,400,401,402,403,404,405,406,407,408,409,410,411,412,413,414,415,416,417,418,419,420,421,422,423,424,425,426,427,428,429,430,431,432,433,434,435,436,437,438,439,440,441,442,443,444,445,446,447,448,449,450,451,452,453,454,455,456,457,458,459,460,461,462,463,464,465,466,467,468,469,470,471,472,473,474,475,476,477,478,479,480,481,482,483,484,485,486,487,488,489,490,491,492,493,494,495,496,497,498,499,500,501,502,503,504,505,506,507,508,509,510,511,512,513,514,515,516,517,518,519,520,521,522,523,524,525,526,527,528,529,530,531,532,533,534,535,536,537,538,539,540,541,542,543,544,545,546,547,548,549,550,551,552,553,554,555,556,557,558,559,560,561,562,563,564,565,566,567,568,569,570,571,572,573,574,575,576,577,578,579,580,581,582,583,584,585,586,587,588,589,590,591,592,593,594,595,596,597,598,599,600,601,602,603,604,605,606,607,608,609,610,611,612,613,614,615,616,617,618,619,620,621,622,623,624,625,626,627,628,629,630,631,632,633,634,635,636,637,638,639,640,641,642,643,644,645,646,647,648,649,650,651,652,653,654,655,656,657,658,659,660,661,662,663,664,665,666,667,668,669,670,671,672,673,674,675,676,677,678,679,680,681,682,683,684,685,686,687,688,689,690,691,692,693,694,695,696,697,698,699,700,701,702,703,704,705,706,707,708,709,710,711,712,713,714,715,716,717,718,719,720,721,722,723,724,725,726,727,728,729,730,731,732,733,734,735,736,737,738,739,740,741,742,743,744,745,746,747,748,749,750,751,752,753,754,755,756,757,758,759,760,761,762,763,764,765,766,767,768,769,770,771,772,773,774,775,776,777,778,779,780,781,782,783,784,785,786,787,788,789,790,791,792,793,794,795,796,797,798,799,800,801,802,803,804,805,806,807,808,809,810,811,812,813,814,815,816,817,818,819,820,821,822,823,824,825,826,827,828,829,830,831,832,833,834,835,836,837,838,839,840,841,842,843,844,845,846,847,848,849,850,851,852,853,854,855,856,857,858,859,860,861,862,863,864,865,866,867,868,869,870,871,872,873,874,875,876,877,878,879,880,881,882,883,884,885,886,887,888,889,890,891,892,893,894,895,896,897,898,899,900,901,902,903,904,905,906,907,908,909,910,911,912,913,914,915,916,917,918,919,920,921,922,923,924,925,926,927,928,929,930,931,932,933,934,935,936,937,938,939,940,941,942,943,944,945,946,947,948,949,950,951,952,953,954,955,956,957,958,959,960,961,962,963,964,965,966,967,968,969,970,971,972,973,974,975,976,977,978,979,980,981,982,983,984,985,986,987,988,989,990,991,992,993,994,995,996,997,998,999],\"y\":{\"__ndarray__\":\"qmBUUieAKUCqYFRSJ4ApQKpgVFIngClAqmBUUieAKUCqYFRSJ4ApQKpgVFIngClAqmBUUieAKUCqYFRSJ4ApQKpgVFIngClAqmBUUieAKUCqYFRSJ4ApQKpgVFIngClAqmBUUieAKUCqYFRSJ4ApQKpgVFIngClAqmBUUieAKUCqYFRSJ4ApQKpgVFIngClAgEi/fR3YJUCASL99HdglQIBIv30d2CVAgEi/fR3YJUCASL99HdglQIBIv30d2CVAgEi/fR3YJUCASL99HdglQIBIv30d2CVAgEi/fR3YJUCASL99HdglQIBIv30d2CVAgEi/fR3YJUCy9KEL6rsjQLL0oQvquyNAsvShC+q7I0Cy9KEL6rsjQLL0oQvquyNAsvShC+q7I0Cy9KEL6rsjQLL0oQvquyNAsvShC+q7I0Cy9KEL6rsjQLL0oQvquyNAsvShC+q7I0Cy9KEL6rsjQLL0oQvquyNAsvShC+q7I0Cy9KEL6rsjQLL0oQvquyNAsvShC+q7I0Cy9KEL6rsjQLL0oQvquyNAsvShC+q7I0Cy9KEL6rsjQLL0oQvquyNA2o8UkWG1IkDajxSRYbUiQNqPFJFhtSJA2o8UkWG1IkDajxSRYbUiQNqPFJFhtSJA2o8UkWG1IkDajxSRYbUiQNqPFJFhtSJA2o8UkWG1IkDajxSRYbUiQNqPFJFhtSJA2o8UkWG1IkDajxSRYbUiQNqPFJFhtSJA2o8UkWG1IkDajxSRYbUiQNqPFJFhtSJA2o8UkWG1IkDajxSRYbUiQNqPFJFhtSJA2o8UkWG1IkDajxSRYbUiQNqPFJFhtSJA2o8UkWG1IkDajxSRYbUiQNqPFJFhtSJA2o8UkWG1IkDajxSRYbUiQNqPFJFhtSJA2o8UkWG1IkDajxSRYbUiQNqPFJFhtSJA2o8UkWG1IkDajxSRYbUiQNqPFJFhtSJA2o8UkWG1IkDajxSRYbUiQNqPFJFhtSJA2o8UkWG1IkDajxSRYbUiQNqPFJFhtSJA2o8UkWG1IkDajxSRYbUiQNqPFJFhtSJA2o8UkWG1IkDajxSRYbUiQNqPFJFhtSJA2o8UkWG1IkDajxSRYbUiQNqPFJFhtSJA2o8UkWG1IkDajxSRYbUiQNqPFJFhtSJA2o8UkWG1IkDajxSRYbUiQNqPFJFhtSJA2o8UkWG1IkDajxSRYbUiQNqPFJFhtSJA2o8UkWG1IkDajxSRYbUiQNqPFJFhtSJA2o8UkWG1IkDajxSRYbUiQNqPFJFhtSJA2o8UkWG1IkDajxSRYbUiQNqPFJFhtSJA2o8UkWG1IkDajxSRYbUiQNqPFJFhtSJA2o8UkWG1IkDajxSRYbUiQNqPFJFhtSJA2o8UkWG1IkDajxSRYbUiQNqPFJFhtSJA2o8UkWG1IkDajxSRYbUiQNqPFJFhtSJA2o8UkWG1IkDajxSRYbUiQNqPFJFhtSJA2o8UkWG1IkDajxSRYbUiQNqPFJFhtSJA2o8UkWG1IkDajxSRYbUiQNqPFJFhtSJA2o8UkWG1IkDajxSRYbUiQNqPFJFhtSJA2o8UkWG1IkDajxSRYbUiQNqPFJFhtSJA2o8UkWG1IkDajxSRYbUiQNqPFJFhtSJA2o8UkWG1IkDajxSRYbUiQNqPFJFhtSJA2o8UkWG1IkDajxSRYbUiQNqPFJFhtSJA2o8UkWG1IkDajxSRYbUiQNqPFJFhtSJA2o8UkWG1IkDajxSRYbUiQNqPFJFhtSJA2o8UkWG1IkDajxSRYbUiQNqPFJFhtSJA2o8UkWG1IkDajxSRYbUiQNqPFJFhtSJA2o8UkWG1IkDajxSRYbUiQNqPFJFhtSJA2o8UkWG1IkDajxSRYbUiQNqPFJFhtSJA2o8UkWG1IkDajxSRYbUiQNqPFJFhtSJA2o8UkWG1IkDajxSRYbUiQNqPFJFhtSJA2o8UkWG1IkDajxSRYbUiQNqPFJFhtSJA2o8UkWG1IkDajxSRYbUiQNqPFJFhtSJA2o8UkWG1IkDajxSRYbUiQNqPFJFhtSJA2o8UkWG1IkDajxSRYbUiQNqPFJFhtSJA2o8UkWG1IkDajxSRYbUiQNqPFJFhtSJA2o8UkWG1IkDajxSRYbUiQNqPFJFhtSJA2o8UkWG1IkDajxSRYbUiQNqPFJFhtSJA2o8UkWG1IkDajxSRYbUiQNqPFJFhtSJA2o8UkWG1IkDajxSRYbUiQNqPFJFhtSJA2o8UkWG1IkDajxSRYbUiQNqPFJFhtSJA2o8UkWG1IkDajxSRYbUiQNqPFJFhtSJA2o8UkWG1IkDajxSRYbUiQNqPFJFhtSJA2o8UkWG1IkDajxSRYbUiQNqPFJFhtSJA2o8UkWG1IkDajxSRYbUiQNqPFJFhtSJA2o8UkWG1IkDajxSRYbUiQNqPFJFhtSJA2o8UkWG1IkDajxSRYbUiQNqPFJFhtSJA2o8UkWG1IkDajxSRYbUiQNqPFJFhtSJA2o8UkWG1IkDajxSRYbUiQNqPFJFhtSJA2o8UkWG1IkDajxSRYbUiQNqPFJFhtSJA2o8UkWG1IkDajxSRYbUiQNqPFJFhtSJA2o8UkWG1IkDajxSRYbUiQNqPFJFhtSJA2o8UkWG1IkDajxSRYbUiQNqPFJFhtSJA2o8UkWG1IkDajxSRYbUiQNqPFJFhtSJA2o8UkWG1IkDajxSRYbUiQNqPFJFhtSJA2o8UkWG1IkDajxSRYbUiQNqPFJFhtSJA2o8UkWG1IkDajxSRYbUiQNqPFJFhtSJA2o8UkWG1IkDajxSRYbUiQNqPFJFhtSJA2o8UkWG1IkDajxSRYbUiQNqPFJFhtSJA2o8UkWG1IkDajxSRYbUiQNqPFJFhtSJA2o8UkWG1IkDajxSRYbUiQNqPFJFhtSJA2o8UkWG1IkDajxSRYbUiQNqPFJFhtSJA2o8UkWG1IkDajxSRYbUiQNqPFJFhtSJA2o8UkWG1IkDajxSRYbUiQAqi7gOQiiFACqLuA5CKIUAKou4DkIohQAqi7gOQiiFACqLuA5CKIUAKou4DkIohQAqi7gOQiiFACqLuA5CKIUBbmfBL/WwhQFuZ8Ev9bCFAW5nwS/1sIUBx5ldzgGAhQHHmV3OAYCFAceZXc4BgIUBx5ldzgGAhQHHmV3OAYCFAceZXc4BgIUBx5ldzgGAhQHHmV3OAYCFAceZXc4BgIUBx5ldzgGAhQHHmV3OAYCFAceZXc4BgIUBx5ldzgGAhQHHmV3OAYCFAceZXc4BgIUBx5ldzgGAhQGGJB5RN+R9AYYkHlE35H0BhiQeUTfkfQGGJB5RN+R9AYYkHlE35H0BhiQeUTfkfQGGJB5RN+R9AYYkHlE35H0BhiQeUTfkfQGGJB5RN+R9AYYkHlE35H0BhiQeUTfkfQGGJB5RN+R9AYYkHlE35H0BhiQeUTfkfQGGJB5RN+R9AYYkHlE35H0BhiQeUTfkfQJCg+DHm7h1Aba0vEtqSHEBtrS8S2pIcQEQ0uoPY+RpARDS6g9j5GkBu+rMfKQIaQG76sx8pAhpAbvqzHykCGkBu+rMfKQIaQMSZX80B4hhAxJlfzQHiGEAxJZLoZTQWQBbe5SK+cxZA2IFzRpS2FEB7Tnrf+BoVQHtOet/4GhVAe0563/gaFUB7Tnrf+BoVQIkMq3gjsxVAiQyreCOzFUAb9RCN7gAVQBv1EI3uABVAG/UQje4AFUAb9RCN7gAVQBv1EI3uABVAYoTwaONoFUBihPBo42gVQGKE8GjjaBVAYoTwaONoFUBihPBo42gVQGKE8GjjaBVAYoTwaONoFUBihPBo42gVQAouVtRguhVACi5W1GC6FUAKLlbUYLoVQAouVtRguhVAF2U2yCQjFEAXZTbIJCMUQBdlNsgkIxRAF2U2yCQjFEAXZTbIJCMUQPjfSnZsBBVAbhea6zSyFEBuF5rrNLIUQG4Xmus0shRAUBn/PuMCFkBQGf8+4wIWQP/PYb68ABVA/89hvrwAFUD/z2G+vAAVQEGC4seYexNAQYLix5h7E0BWt3pOen8TQHiXi/hOLBRAkUQvo1iuE0D/7EeKyLASQKmHaHQHkRRAqYdodAeRFECph2h0B5EUQOxMofMamxRAlPYGX5jME0CU9gZfmMwTQJT2Bl+YzBNAlPYGX5jME0DarPpcbWUTQOPfZ1w4sBNA499nXDiwE0A8a7ddaG4SQDxrt11obhJAQlvOpbiKEkBCW86luIoSQEJbzqW4ihJA+zpwzogSEkD7OnDOiBISQPs6cM6IEhJAw4GQLGDCEUDlYaHWNE8SQI1/n3HhoBFAjX+fceGgEUCNf59x4aARQI1/n3HhoBFAjX+fceGgEUCNf59x4aARQNXsgVZgyBFA1eyBVmDIEUDL+PcZF84PQIiAQ6hSsw9AiIBDqFKzD0DOwp52+AsQQM7Cnnb4CxBAzsKedvgLEEDOwp52+AsQQOYivhOzHhBArW71nPQ+EECtbvWc9D4QQL5Nf/YjxQ9Avk1/9iPFD0C+TX/2I8UPQL5Nf/YjxQ9AtJPBUfKqEUAxzt+EQgQSQGZJgJpaVhFAwRw9fm9TEECZDTLJyNkOQJkNMsnI2Q5AznADPj+MDkDOcAM+P4wOQM5wAz4/jA5AZ2FPO/w1EUCxxAPKpjwQQLHEA8qmPBBAscQDyqY8EEBhN2xblHkQQNfdPNUhtxBAN3Fyv0PREEA3cXK/Q9EQQMEcPX5vMxBASKeufJYnEEBIp658licQQOAQqtTsgRBAD7kZbsAnFED/7EeKyNASQP/sR4rI0BJA1EM0uoP4E0DUQzS6g/gTQNRDNLqD+BNA1EM0uoP4E0D3WPrQBbUSQNpyLsVVhRJA2nIuxVWFEkDaci7FVYUSQNpyLsVVhRJA2nIuxVWFEkDaci7FVYUSQOEoeXWOARNAZaVJKegWE0BlpUkp6BYTQGWlSSnoFhNAZaVJKegWE0BlpUkp6BYTQADjGTT07xJAAOMZNPTvEkBehZSfVBsSQF6FlJ9UGxJAXoWUn1QbEkC9++O9agUSQG3n+6nxUhJAbef7qfFSEkBt5/up8VISQENWt3pOehFAQ1a3ek56EUA+y/Pg7owRQD7L8+DujBFAPsvz4O6MEUA+y/Pg7owRQDI9YYkHNBBAMj1hiQc0EEAyPWGJBzQQQE+Srpl8sw1AW86luKpsDkBbzqW4qmwOQIkpkUQvYw5Aj+TyH9KvDkCGj4gpkaQUQIaPiCmRpBRAVACMZ9AwFUCW7NgIxIsUQJbs2AjEixRAluzYCMSLFECW7NgIxIsUQJHQlnMprhNAkdCWcymuE0AmHlA25QoUQCYeUDblChRAJh5QNuUKFEAmHlA25QoUQCYeUDblChRAJh5QNuUKFEAmHlA25QoUQNUJaCJsGBRA1QloImwYFEDVCWgibBgUQJMANbVs7RNAkwA1tWztE0CTADW1bO0TQJMANbVs7RNAM4rlllZjFECrJoi6DwAUQKsmiLoPABRAqyaIug8AFECrJoi6DwAUQKsmiLoPABRAqyaIug8AFEB3Sgfr/xwUQHdKB+v/HBRAshGI1/XrFECyEYjX9esUQLIRiNf16xRAshGI1/XrFEChoX+Ci5UTQKGhf4KLlRNAoaF/gouVE0DBkNWtntMTQMGQ1a2e0xNAqkiFsYXgEkCqSIWxheASQKpIhbGF4BJA0egOYmdKE0DR6A5iZ0oTQIUIOIQqVRFATnrf+NoTEkBOet/42hMSQE563/jaExJATnrf+NoTEkBOet/42hMSQE563/jaExJATnrf+NoTEkBOet/42hMSQE563/jaExJAeV2/YDdsEUA51sVtNEARQKzijcwj3xJAXtcv2A3bEUBe1y/YDdsRQF7XL9gN2xFARrHc0moIEkCfjscMVEYRQDXSUnk7QhFArDlAMEcPEUCsOUAwRw8RQDtwzojSfhBAO3DOiNJ+EEBrn47HDNQQQCLgEKrU7BBAIuAQqtTsEEAi4BCq1OwQQCLgEKrU7BBAIuAQqtTsEEAWGLK61bMQQEuTUtDtJRBARUdy+Q9pD0BFR3L5D2kPQEVHcvkPaQ9Ake18PzUeEUCR7Xw/NR4RQAZHyatzLBBABkfJq3MsEEAGR8mrcywQQGxblNkgEw5AbFuU2SATDkDRkVz+Q3oPQOZXc4BgDg9Ad6G5TiOtDUB3oblOI60NQMnIWdjTzgxAX7Uy4Zd6DUASMSWS6GUMQGEaho+IaQpAgJpattaXDEAr3sg88ocLQCveyDzyhwtAtVTejnCaDEC1VN6OcJoMQLcos0EmWQ5AtyizQSZZDkC3KLNBJlkOQLcos0EmWQ5AJH8w8Ny7DkDwhclUwagOQPCFyVTBqA5Aqiuf5XnwD0CqK5/lefAPQKorn+V58A9Aqiuf5XnwD0CqK5/lefAPQATKplzhXQ5A9DehEAEHDkD0N6EQAQcOQPQ3oRABBw5A9DehEAEHDkBcd/NUhxwPQFx381SHHA9AXHfzVIccD0Bcd/NUhxwPQBHfiVkvBg9AEyf3OxTFD0Cnlq31RcIPQO7O2m0XmhBASDMWTWfHEUBIMxZNZ8cRQDP+fcaF4xBAf7xXrUyYEEA3T3XIzdARQDdPdcjN0BFAh4px/iY0EkCHinH+JjQSQBh47j1cshFAXi7iOzHLEUBeLuI7McsRQKBU+3Q8xhFARs7CnnY4EkAr2bERiPcRQCvZsRGI9xFAK9mxEYj3EUD9ag4QzHERQP1qDhDMcRFA/WoOEMxxEUD9ag4QzHERQJ8fRgiPlhBAnx9GCI+WEEDLLa2GxH0PQFhWmpSCLhBAOsyXF2D/EEA6zJcXYP8QQGWlSSno9hBAZaVJKej2EEAoLPGAsukQQIS7s3bbpRFAhLuzdtulEUDH155ZEgARQGxDxTh/UxFADHbDtkVZEUAMdsO2RVkRQFaalIJu7xBAQfFjzF3LEUBB8WPMXcsRQGa9GMqJthFANGjon+ACEUDyDBr6J7gQQPIMGvonuBBA8gwa+ie4EEDyDBr6J7gQQIPdsG1RBhFAg92wbVEGEUCiC+pb5tQRQKIL6lvm1BFAogvqW+bUEUCiC+pb5tQRQKIL6lvm1BFAUTHO34TCEkBRMc7fhMISQE1KQbeX1BBArP9zmC9PEkCs/3OYL08SQHqNXaJ6CxNA/kP67etgE0D+Q/rt62ATQP5D+u3rYBNA+tAF9S3zE0A+6Nms+lwTQD7o2az6XBNAPujZrPpcE0BRiIBDqDISQFGIgEOoMhJAmDRG66iqEkCYNEbrqKoSQJg0RuuoqhJAmDRG66iqEkCfAmA8g2YSQJ8CYDyDZhJAnwJgPINmEkCfAmA8g2YSQMYWghyUMBJAxhaCHJQwEkDGFoIclDASQH6MuWsJuRJAfoy5awm5EkBvgQTFj/ESQG+BBMWP8RJAS5NS0O3lEkB1kxgEVo4SQOeMKO0N/hBA54wo7Q3+EEDnjCjtDf4QQOeMKO0N/hBA54wo7Q3+EEDnjCjtDf4QQOeMKO0N/hBA54wo7Q3+EEDnjCjtDf4QQOeMKO0N/hBAlPsdigL9EECU+x2KAv0QQJT7HYoC/RBAlPsdigL9EEAn9zsUBfoQQOjZrPpcDRFA6Nms+lwNEUDo2az6XA0RQEW7Cik/SRFAS8gHPZsVEEAtlbcjnBYPQDWYhuEjIhJANZiG4SMiEkDikuNO6SAUQOKS407pIBRAMIFbd/O0FEAwgVt387QUQDCBW3fztBRA7xtfe2bpEUC+wRcmU+URQDLJyFnYMxBAMsnIWdgzEEAyychZ2DMQQDLJyFnYMxBA0T/BxYqaDkDRP8HFipoOQNE/wcWKmg5APujZrPqcDkA+6Nms+pwOQMkfDDz3PhBAyR8MPPc+EEAR5KCEmXYOQBHkoISZdg5AEeSghJl2DkAR5KCEmXYOQEurIXGPJRBAmdh8XBsqEEDi5H6HooARQOLkfoeigBFAN2xblNlgEUA3bFuU2WARQDdsW5TZYBFAHZQw0/ZPEkAdlDDT9k8SQB2UMNP2TxJAtaZ5xylaE0C1pnnHKVoTQLWmeccpWhNAtaZ5xylaE0C1pnnHKVoTQIums5PB0RNALJ/leXCXFEAsn+V5cJcUQK00KQXd/hJArTQpBd3+EkCtNCkF3f4SQG3F/rJ7EhNA6fF7m/5MEUAm32xzY7oRQCo6kst/aBFADY6SV+eYEUBmZmZmZiYSQGZmZmZmJhJAZmZmZmYmEkBmZmZmZiYSQGZmZmZmJhJAZmZmZmYmEkAOoUrNHggSQHUCmggbHhJAixpMw/DREUCLGkzD8NERQIsaTMPw0RFAcr9DUaCvEUA3cXK/QzESQH5v05/9iBJAfm/Tn/2IEkB+b9Of/YgSQH5v05/9iBJAfm/Tn/2IEkB+b9Of/YgSQIs3Mo/8IRNA8nub/uznEkDye5v+7OcSQPJ7m/7s5xJAYwtBDkoYE0AQr+sX7MYTQNhHp658VhRA2EenrnxWFEBWSPlJta8TQB1aZDvfTxRA9YQlHlC2FED1hCUeULYUQPWEJR5QthRA9YQlHlC2FEDVsrW+SMgUQNWytb5IyBRA1bK1vkjIFED1nPS+8dUTQPWc9L7x1RNA9Zz0vvHVE0CiYpy/CYUSQKJinL8JhRJAomKcvwmFEkCiYpy/CYUSQKJinL8JhRJAMgOV8e/TEUB0RpT2Bp8SQHRGlPYGnxJAu/JZngfXEkC78lmeB9cSQLvyWZ4H1xJA3rBtUWZDEkCx4emVsowRQLHh6ZWyjBFAseHplbKMEUCx4emVsowRQLHh6ZWyjBFAzo3pCUt8EUBLzR5oBYYTQEvNHmgFhhNAS80eaAWGE0BLzR5oBYYTQHSYLy/AnhJAdJgvL8CeEkB0mC8vwJ4SQHSYLy/AnhJAdJgvL8CeEkB0mC8vwJ4SQHSYLy/AnhJAdJgvL8CeEkCwrDQpBT0TQDnulA7WfxJAUORJ0jXzEkBQ5EnSNfMSQFDkSdI18xJAUORJ0jXzEkBQ5EnSNfMSQD+RJ0nXDBNAP5EnSdcME0A/kSdJ1wwTQN3NUx1yExNAxF+TNepBEkBuNIC3QEIPQPJetTLhVw5A8l61MuFXDkDyXrUy4VcOQPJetTLhVw5A8l61MuFXDkDyXrUy4VcOQD0P7s7azRBAPQ/uztrNEEDb3JiesMQQQANbJVgcDhBAY9F0djI4DkBLPKBsypUOQIy5awn54A1AWtjTDn+tEEA5Yi0+BQAPQDEIrBxaJBBAMQisHFokEEDxnZj1YugQQPGdmPVi6BBA8piByvh3EUCrz9VW7A8SQKvP1VbsDxJAq8/VVuwPEkAIclDCTDsSQD5cctwpPRNAPlxy3Ck9E0A+XHLcKT0TQD7t8Ndk7RFAPu3w12TtEUBfmEwVjOoRQF+YTBWM6hFAEwoRcAg1EUATChFwCDURQNaLoZxoFxFA2v6VlSbFE0Da/pWVJsUTQNrJ4Ch51RNAMnIW9rQDE0AteNFXkCYTQLXDX5M1ahNAknTN5JuNE0C4AZ8fRugSQLgBnx9G6BJAuAGfH0boEkAu4jsx66USQC7iOzHrpRJALuI7MeulEkAu4jsx66USQC7iOzHrpRJALuI7MeulEkBenWNA9roTQF6dY0D2uhNAXp1jQPa6E0C536Eo0CcTQLnfoSjQJxNAa5p3nKLjEkBGtvP91FgTQMUgsHJoERNA5q4l5IMeE0DmriXkgx4TQI8ZqIx/nxJAy2d5HtydEkDLZ3ke3J0SQGiR7Xw/lRJAaJHtfD+VEkBoke18P5USQL1vfO2ZhRFAvW987ZmFEUC9b3ztmYURQE9AE2HD0xJAT0ATYcPTEkBPQBNhw9MSQE9AE2HD0xJA/3ivWpnwEkCz6nO1FXsTQMKGp1fKUhNAwoanV8pSE0DChqdXylITQHsUrkfh+hJAexSuR+H6EkB7FK5H4foSQNP2r6w0KRRA0/avrDQpFED5vU1/9mMRQK0vEtpyrhFArS8S2nKuEUClTkATYeMRQKVOQBNh4xFApU5AE2HjEUBgArfu5skRQGACt+7myRFAYAK37ubJEUCsrdhfdo8SQI0o7Q2+8BJAjSjtDb7wEkCwA+eMKE0SQLAD54woTRJAsAPnjChNEkCwA+eMKE0SQLAD54woTRJAsAPnjChNEkC0Hykiw6oSQLQfKSLDqhJAsRafAmD8E0DH9IQlHvAUQMf0hCUe8BRAhZm2f2UlFUDXL9gN27YUQLsPQGoTRxRAAWpq2Vq/E0ABamrZWr8TQHJQwkzbHxRAclDCTNsfFEByUMJM2x8UQHpwd9ZuOxRAenB31m47FED1vvG1Z3YUQHfbheY6bRVAtHHEWnxKFUC0ccRafEoVQLRxxFp8ShVA3J212y60FEDcnbXbLrQUQNydtdsutBRAU8vW+iKBFEDGFoIclDAUQMYWghyUMBRAxhaCHJQwFEDGFoIclDAUQFTjpZvEYBNAVOOlm8RgE0Br1EM0usMSQC7iOzHrJRNAz4O7s3ZbEkDPg7uzdlsSQM+Du7N2WxJAXmOXqN7aE0BeY5eo3toTQIczv5oDJBNAhzO/mgMkE0CHM7+aAyQTQJc5XRYTuxFAcr9DUaCvEEByv0NRoK8QQFq77UJzvRBAWrvtQnO9EEBau+1Cc70QQLdif9k9OQ9AqyFxj6WvEEA=\",\"dtype\":\"float64\",\"shape\":[1000]}},\"selected\":{\"id\":\"1224\",\"type\":\"Selection\"},\"selection_policy\":{\"id\":\"1223\",\"type\":\"UnionRenderers\"}},\"id\":\"1144\",\"type\":\"ColumnDataSource\"},{\"attributes\":{\"callback\":null,\"data\":{\"x\":[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,295,296,297,298,299,300,301,302,303,304,305,306,307,308,309,310,311,312,313,314,315,316,317,318,319,320,321,322,323,324,325,326,327,328,329,330,331,332,333,334,335,336,337,338,339,340,341,342,343,344,345,346,347,348,349,350,351,352,353,354,355,356,357,358,359,360,361,362,363,364,365,366,367,368,369,370,371,372,373,374,375,376,377,378,379,380,381,382,383,384,385,386,387,388,389,390,391,392,393,394,395,396,397,398,399,400,401,402,403,404,405,406,407,408,409,410,411,412,413,414,415,416,417,418,419,420,421,422,423,424,425,426,427,428,429,430,431,432,433,434,435,436,437,438,439,440,441,442,443,444,445,446,447,448,449,450,451,452,453,454,455,456,457,458,459,460,461,462,463,464,465,466,467,468,469,470,471,472,473,474,475,476,477,478,479,480,481,482,483,484,485,486,487,488,489,490,491,492,493,494,495,496,497,498,499,500,501,502,503,504,505,506,507,508,509,510,511,512,513,514,515,516,517,518,519,520,521,522,523,524,525,526,527,528,529,530,531,532,533,534,535,536,537,538,539,540,541,542,543,544,545,546,547,548,549,550,551,552,553,554,555,556,557,558,559,560,561,562,563,564,565,566,567,568,569,570,571,572,573,574,575,576,577,578,579,580,581,582,583,584,585,586,587,588,589,590,591,592,593,594,595,596,597,598,599,600,601,602,603,604,605,606,607,608,609,610,611,612,613,614,615,616,617,618,619,620,621,622,623,624,625,626,627,628,629,630,631,632,633,634,635,636,637,638,639,640,641,642,643,644,645,646,647,648,649,650,651,652,653,654,655,656,657,658,659,660,661,662,663,664,665,666,667,668,669,670,671,672,673,674,675,676,677,678,679,680,681,682,683,684,685,686,687,688,689,690,691,692,693,694,695,696,697,698,699,700,701,702,703,704,705,706,707,708,709,710,711,712,713,714,715,716,717,718,719,720,721,722,723,724,725,726,727,728,729,730,731,732,733,734,735,736,737,738,739,740,741,742,743,744,745,746,747,748,749,750,751,752,753,754,755,756,757,758,759,760,761,762,763,764,765,766,767,768,769,770,771,772,773,774,775,776,777,778,779,780,781,782,783,784,785,786,787,788,789,790,791,792,793,794,795,796,797,798,799,800,801,802,803,804,805,806,807,808,809,810,811,812,813,814,815,816,817,818,819,820,821,822,823,824,825,826,827,828,829,830,831,832,833,834,835,836,837,838,839,840,841,842,843,844,845,846,847,848,849,850,851,852,853,854,855,856,857,858,859,860,861,862,863,864,865,866,867,868,869,870,871,872,873,874,875,876,877,878,879,880,881,882,883,884,885,886,887,888,889,890,891,892,893,894,895,896,897,898,899,900,901,902,903,904,905,906,907,908,909,910,911,912,913,914,915,916,917,918,919,920,921,922,923,924,925,926,927,928,929,930,931,932,933,934,935,936,937,938,939,940,941,942,943,944,945,946,947,948,949,950,951,952,953,954,955,956,957,958,959,960,961,962,963,964,965,966,967,968,969,970,971,972,973,974,975,976,977,978,979,980,981,982,983,984,985,986,987,988,989,990,991,992,993,994,995,996,997,998,999],\"y\":{\"__ndarray__\":\"1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUDWxW00gEchQNbFbTSARyFA1sVtNIBHIUA=\",\"dtype\":\"float64\",\"shape\":[1000]}},\"selected\":{\"id\":\"1242\",\"type\":\"Selection\"},\"selection_policy\":{\"id\":\"1241\",\"type\":\"UnionRenderers\"}},\"id\":\"1201\",\"type\":\"ColumnDataSource\"},{\"attributes\":{\"toolbar\":{\"id\":\"1249\",\"type\":\"ProxyToolbar\"},\"toolbar_location\":\"above\"},\"id\":\"1250\",\"type\":\"ToolbarBox\"},{\"attributes\":{\"below\":[{\"id\":\"1173\",\"type\":\"LinearAxis\"}],\"center\":[{\"id\":\"1177\",\"type\":\"Grid\"},{\"id\":\"1182\",\"type\":\"Grid\"}],\"frame_height\":150,\"frame_width\":600,\"left\":[{\"id\":\"1178\",\"type\":\"LinearAxis\"}],\"renderers\":[{\"id\":\"1199\",\"type\":\"GlyphRenderer\"},{\"id\":\"1204\",\"type\":\"GlyphRenderer\"},{\"id\":\"1209\",\"type\":\"GlyphRenderer\"},{\"id\":\"1214\",\"type\":\"GlyphRenderer\"}],\"title\":{\"id\":\"1233\",\"type\":\"Title\"},\"toolbar\":{\"id\":\"1189\",\"type\":\"Toolbar\"},\"toolbar_location\":null,\"x_range\":{\"id\":\"1165\",\"type\":\"Range1d\"},\"x_scale\":{\"id\":\"1169\",\"type\":\"LinearScale\"},\"y_range\":{\"id\":\"1167\",\"type\":\"DataRange1d\"},\"y_scale\":{\"id\":\"1171\",\"type\":\"LinearScale\"}},\"id\":\"1164\",\"subtype\":\"Figure\",\"type\":\"Plot\"},{\"attributes\":{\"data_source\":{\"id\":\"1159\",\"type\":\"ColumnDataSource\"},\"glyph\":{\"id\":\"1160\",\"type\":\"Line\"},\"hover_glyph\":null,\"muted_glyph\":null,\"nonselection_glyph\":{\"id\":\"1161\",\"type\":\"Line\"},\"selection_glyph\":null,\"view\":{\"id\":\"1163\",\"type\":\"CDSView\"}},\"id\":\"1162\",\"type\":\"GlyphRenderer\"},{\"attributes\":{},\"id\":\"1119\",\"type\":\"LinearScale\"},{\"attributes\":{\"line_alpha\":0.1,\"line_color\":\"#1f77b4\",\"line_width\":2,\"x\":{\"field\":\"x\"},\"y\":{\"field\":\"y\"}},\"id\":\"1161\",\"type\":\"Line\"},{\"attributes\":{\"line_alpha\":0.1,\"line_color\":\"#1f77b4\",\"line_width\":2,\"x\":{\"field\":\"x\"},\"y\":{\"field\":\"y\"}},\"id\":\"1208\",\"type\":\"Line\"},{\"attributes\":{\"source\":{\"id\":\"1196\",\"type\":\"ColumnDataSource\"}},\"id\":\"1200\",\"type\":\"CDSView\"},{\"attributes\":{\"data_source\":{\"id\":\"1144\",\"type\":\"ColumnDataSource\"},\"glyph\":{\"id\":\"1145\",\"type\":\"Line\"},\"hover_glyph\":null,\"muted_glyph\":null,\"nonselection_glyph\":{\"id\":\"1146\",\"type\":\"Line\"},\"selection_glyph\":null,\"view\":{\"id\":\"1148\",\"type\":\"CDSView\"}},\"id\":\"1147\",\"type\":\"GlyphRenderer\"},{\"attributes\":{\"data_source\":{\"id\":\"1201\",\"type\":\"ColumnDataSource\"},\"glyph\":{\"id\":\"1202\",\"type\":\"Line\"},\"hover_glyph\":null,\"muted_glyph\":null,\"nonselection_glyph\":{\"id\":\"1203\",\"type\":\"Line\"},\"selection_glyph\":null,\"view\":{\"id\":\"1205\",\"type\":\"CDSView\"}},\"id\":\"1204\",\"type\":\"GlyphRenderer\"},{\"attributes\":{\"tools\":[{\"id\":\"1131\",\"type\":\"PanTool\"},{\"id\":\"1132\",\"type\":\"WheelZoomTool\"},{\"id\":\"1133\",\"type\":\"BoxZoomTool\"},{\"id\":\"1134\",\"type\":\"SaveTool\"},{\"id\":\"1135\",\"type\":\"ResetTool\"},{\"id\":\"1136\",\"type\":\"HelpTool\"},{\"id\":\"1183\",\"type\":\"PanTool\"},{\"id\":\"1184\",\"type\":\"WheelZoomTool\"},{\"id\":\"1185\",\"type\":\"BoxZoomTool\"},{\"id\":\"1186\",\"type\":\"SaveTool\"},{\"id\":\"1187\",\"type\":\"ResetTool\"},{\"id\":\"1188\",\"type\":\"HelpTool\"}]},\"id\":\"1249\",\"type\":\"ProxyToolbar\"},{\"attributes\":{\"active_drag\":\"auto\",\"active_inspect\":\"auto\",\"active_multi\":null,\"active_scroll\":\"auto\",\"active_tap\":\"auto\",\"tools\":[{\"id\":\"1183\",\"type\":\"PanTool\"},{\"id\":\"1184\",\"type\":\"WheelZoomTool\"},{\"id\":\"1185\",\"type\":\"BoxZoomTool\"},{\"id\":\"1186\",\"type\":\"SaveTool\"},{\"id\":\"1187\",\"type\":\"ResetTool\"},{\"id\":\"1188\",\"type\":\"HelpTool\"}]},\"id\":\"1189\",\"type\":\"Toolbar\"},{\"attributes\":{\"callback\":null,\"data\":{\"x\":[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,295,296,297,298,299,300,301,302,303,304,305,306,307,308,309,310,311,312,313,314,315,316,317,318,319,320,321,322,323,324,325,326,327,328,329,330,331,332,333,334,335,336,337,338,339,340,341,342,343,344,345,346,347,348,349,350,351,352,353,354,355,356,357,358,359,360,361,362,363,364,365,366,367,368,369,370,371,372,373,374,375,376,377,378,379,380,381,382,383,384,385,386,387,388,389,390,391,392,393,394,395,396,397,398,399,400,401,402,403,404,405,406,407,408,409,410,411,412,413,414,415,416,417,418,419,420,421,422,423,424,425,426,427,428,429,430,431,432,433,434,435,436,437,438,439,440,441,442,443,444,445,446,447,448,449,450,451,452,453,454,455,456,457,458,459,460,461,462,463,464,465,466,467,468,469,470,471,472,473,474,475,476,477,478,479,480,481,482,483,484,485,486,487,488,489,490,491,492,493,494,495,496,497,498,499,500,501,502,503,504,505,506,507,508,509,510,511,512,513,514,515,516,517,518,519,520,521,522,523,524,525,526,527,528,529,530,531,532,533,534,535,536,537,538,539,540,541,542,543,544,545,546,547,548,549,550,551,552,553,554,555,556,557,558,559,560,561,562,563,564,565,566,567,568,569,570,571,572,573,574,575,576,577,578,579,580,581,582,583,584,585,586,587,588,589,590,591,592,593,594,595,596,597,598,599,600,601,602,603,604,605,606,607,608,609,610,611,612,613,614,615,616,617,618,619,620,621,622,623,624,625,626,627,628,629,630,631,632,633,634,635,636,637,638,639,640,641,642,643,644,645,646,647,648,649,650,651,652,653,654,655,656,657,658,659,660,661,662,663,664,665,666,667,668,669,670,671,672,673,674,675,676,677,678,679,680,681,682,683,684,685,686,687,688,689,690,691,692,693,694,695,696,697,698,699,700,701,702,703,704,705,706,707,708,709,710,711,712,713,714,715,716,717,718,719,720,721,722,723,724,725,726,727,728,729,730,731,732,733,734,735,736,737,738,739,740,741,742,743,744,745,746,747,748,749,750,751,752,753,754,755,756,757,758,759,760,761,762,763,764,765,766,767,768,769,770,771,772,773,774,775,776,777,778,779,780,781,782,783,784,785,786,787,788,789,790,791,792,793,794,795,796,797,798,799,800,801,802,803,804,805,806,807,808,809,810,811,812,813,814,815,816,817,818,819,820,821,822,823,824,825,826,827,828,829,830,831,832,833,834,835,836,837,838,839,840,841,842,843,844,845,846,847,848,849,850,851,852,853,854,855,856,857,858,859,860,861,862,863,864,865,866,867,868,869,870,871,872,873,874,875,876,877,878,879,880,881,882,883,884,885,886,887,888,889,890,891,892,893,894,895,896,897,898,899,900,901,902,903,904,905,906,907,908,909,910,911,912,913,914,915,916,917,918,919,920,921,922,923,924,925,926,927,928,929,930,931,932,933,934,935,936,937,938,939,940,941,942,943,944,945,946,947,948,949,950,951,952,953,954,955,956,957,958,959,960,961,962,963,964,965,966,967,968,969,970,971,972,973,974,975,976,977,978,979,980,981,982,983,984,985,986,987,988,989,990,991,992,993,994,995,996,997,998,999],\"y\":{\"__ndarray__\":\"S+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0BL5e0IpwULQEvl7QinBQtAS+XtCKcFC0A=\",\"dtype\":\"float64\",\"shape\":[1000]}},\"selected\":{\"id\":\"1230\",\"type\":\"Selection\"},\"selection_policy\":{\"id\":\"1229\",\"type\":\"UnionRenderers\"}},\"id\":\"1159\",\"type\":\"ColumnDataSource\"},{\"attributes\":{\"callback\":null},\"id\":\"1115\",\"type\":\"DataRange1d\"},{\"attributes\":{},\"id\":\"1117\",\"type\":\"LinearScale\"},{\"attributes\":{\"source\":{\"id\":\"1154\",\"type\":\"ColumnDataSource\"}},\"id\":\"1158\",\"type\":\"CDSView\"},{\"attributes\":{\"line_color\":\"#ff7e0e\",\"line_width\":2,\"x\":{\"field\":\"x\"},\"y\":{\"field\":\"y\"}},\"id\":\"1202\",\"type\":\"Line\"},{\"attributes\":{\"overlay\":{\"id\":\"1222\",\"type\":\"BoxAnnotation\"}},\"id\":\"1133\",\"type\":\"BoxZoomTool\"},{\"attributes\":{},\"id\":\"1188\",\"type\":\"HelpTool\"},{\"attributes\":{\"source\":{\"id\":\"1206\",\"type\":\"ColumnDataSource\"}},\"id\":\"1210\",\"type\":\"CDSView\"},{\"attributes\":{\"data_source\":{\"id\":\"1154\",\"type\":\"ColumnDataSource\"},\"glyph\":{\"id\":\"1155\",\"type\":\"Line\"},\"hover_glyph\":null,\"muted_glyph\":null,\"nonselection_glyph\":{\"id\":\"1156\",\"type\":\"Line\"},\"selection_glyph\":null,\"view\":{\"id\":\"1158\",\"type\":\"CDSView\"}},\"id\":\"1157\",\"type\":\"GlyphRenderer\"},{\"attributes\":{\"line_color\":\"#d62628\",\"line_width\":2,\"x\":{\"field\":\"x\"},\"y\":{\"field\":\"y\"}},\"id\":\"1160\",\"type\":\"Line\"},{\"attributes\":{\"line_alpha\":0.1,\"line_color\":\"#1f77b4\",\"line_width\":2,\"x\":{\"field\":\"x\"},\"y\":{\"field\":\"y\"}},\"id\":\"1156\",\"type\":\"Line\"},{\"attributes\":{\"source\":{\"id\":\"1201\",\"type\":\"ColumnDataSource\"}},\"id\":\"1205\",\"type\":\"CDSView\"},{\"attributes\":{},\"id\":\"1169\",\"type\":\"LinearScale\"},{\"attributes\":{\"source\":{\"id\":\"1149\",\"type\":\"ColumnDataSource\"}},\"id\":\"1153\",\"type\":\"CDSView\"},{\"attributes\":{\"line_alpha\":0.1,\"line_color\":\"#1f77b4\",\"line_width\":2,\"x\":{\"field\":\"x\"},\"y\":{\"field\":\"y\"}},\"id\":\"1198\",\"type\":\"Line\"},{\"attributes\":{},\"id\":\"1187\",\"type\":\"ResetTool\"},{\"attributes\":{},\"id\":\"1186\",\"type\":\"SaveTool\"},{\"attributes\":{},\"id\":\"1134\",\"type\":\"SaveTool\"},{\"attributes\":{\"overlay\":{\"id\":\"1238\",\"type\":\"BoxAnnotation\"}},\"id\":\"1185\",\"type\":\"BoxZoomTool\"},{\"attributes\":{},\"id\":\"1132\",\"type\":\"WheelZoomTool\"},{\"attributes\":{},\"id\":\"1136\",\"type\":\"HelpTool\"},{\"attributes\":{\"data_source\":{\"id\":\"1206\",\"type\":\"ColumnDataSource\"},\"glyph\":{\"id\":\"1207\",\"type\":\"Line\"},\"hover_glyph\":null,\"muted_glyph\":null,\"nonselection_glyph\":{\"id\":\"1208\",\"type\":\"Line\"},\"selection_glyph\":null,\"view\":{\"id\":\"1210\",\"type\":\"CDSView\"}},\"id\":\"1209\",\"type\":\"GlyphRenderer\"},{\"attributes\":{\"children\":[[{\"id\":\"1112\",\"subtype\":\"Figure\",\"type\":\"Plot\"},0,0],[{\"id\":\"1164\",\"subtype\":\"Figure\",\"type\":\"Plot\"},1,0]]},\"id\":\"1248\",\"type\":\"GridBox\"},{\"attributes\":{},\"id\":\"1184\",\"type\":\"WheelZoomTool\"},{\"attributes\":{\"callback\":null,\"data\":{\"x\":[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,295,296,297,298,299,300,301,302,303,304,305,306,307,308,309,310,311,312,313,314,315,316,317,318,319,320,321,322,323,324,325,326,327,328,329,330,331,332,333,334,335,336,337,338,339,340,341,342,343,344,345,346,347,348,349,350,351,352,353,354,355,356,357,358,359,360,361,362,363,364,365,366,367,368,369,370,371,372,373,374,375,376,377,378,379,380,381,382,383,384,385,386,387,388,389,390,391,392,393,394,395,396,397,398,399,400,401,402,403,404,405,406,407,408,409,410,411,412,413,414,415,416,417,418,419,420,421,422,423,424,425,426,427,428,429,430,431,432,433,434,435,436,437,438,439,440,441,442,443,444,445,446,447,448,449,450,451,452,453,454,455,456,457,458,459,460,461,462,463,464,465,466,467,468,469,470,471,472,473,474,475,476,477,478,479,480,481,482,483,484,485,486,487,488,489,490,491,492,493,494,495,496,497,498,499,500,501,502,503,504,505,506,507,508,509,510,511,512,513,514,515,516,517,518,519,520,521,522,523,524,525,526,527,528,529,530,531,532,533,534,535,536,537,538,539,540,541,542,543,544,545,546,547,548,549,550,551,552,553,554,555,556,557,558,559,560,561,562,563,564,565,566,567,568,569,570,571,572,573,574,575,576,577,578,579,580,581,582,583,584,585,586,587,588,589,590,591,592,593,594,595,596,597,598,599,600,601,602,603,604,605,606,607,608,609,610,611,612,613,614,615,616,617,618,619,620,621,622,623,624,625,626,627,628,629,630,631,632,633,634,635,636,637,638,639,640,641,642,643,644,645,646,647,648,649,650,651,652,653,654,655,656,657,658,659,660,661,662,663,664,665,666,667,668,669,670,671,672,673,674,675,676,677,678,679,680,681,682,683,684,685,686,687,688,689,690,691,692,693,694,695,696,697,698,699,700,701,702,703,704,705,706,707,708,709,710,711,712,713,714,715,716,717,718,719,720,721,722,723,724,725,726,727,728,729,730,731,732,733,734,735,736,737,738,739,740,741,742,743,744,745,746,747,748,749,750,751,752,753,754,755,756,757,758,759,760,761,762,763,764,765,766,767,768,769,770,771,772,773,774,775,776,777,778,779,780,781,782,783,784,785,786,787,788,789,790,791,792,793,794,795,796,797,798,799,800,801,802,803,804,805,806,807,808,809,810,811,812,813,814,815,816,817,818,819,820,821,822,823,824,825,826,827,828,829,830,831,832,833,834,835,836,837,838,839,840,841,842,843,844,845,846,847,848,849,850,851,852,853,854,855,856,857,858,859,860,861,862,863,864,865,866,867,868,869,870,871,872,873,874,875,876,877,878,879,880,881,882,883,884,885,886,887,888,889,890,891,892,893,894,895,896,897,898,899,900,901,902,903,904,905,906,907,908,909,910,911,912,913,914,915,916,917,918,919,920,921,922,923,924,925,926,927,928,929,930,931,932,933,934,935,936,937,938,939,940,941,942,943,944,945,946,947,948,949,950,951,952,953,954,955,956,957,958,959,960,961,962,963,964,965,966,967,968,969,970,971,972,973,974,975,976,977,978,979,980,981,982,983,984,985,986,987,988,989,990,991,992,993,994,995,996,997,998,999],\"y\":{\"__ndarray__\":\"+8vuycOKUUD7y+7Jw4pRQPvL7snDilFA+8vuycOKUUD7y+7Jw4pRQPvL7snDilFA+8vuycOKUUD7y+7Jw4pRQLMMcayLu0hAswxxrIu7SECzDHGsi7tIQLMMcayLu0hAswxxrIu7SECzDHGsi7tIQLMMcayLu0hAswxxrIu7SECzDHGsi7tIQLMMcayLu0hAswxxrIu7SECzDHGsi7tIQLMMcayLu0hAswxxrIu7SECzDHGsi7tIQLMMcayLu0hAswxxrIu7SECzDHGsi7tIQLMMcayLu0hAswxxrIu7SECzDHGsi7tIQLMMcayLu0hAswxxrIu7SECzDHGsi7tIQLMMcayLu0hAswxxrIu7SECzDHGsi7tIQLMMcayLu0hAswxxrIu7SECzDHGsi7tIQLMMcayLu0hAswxxrIu7SECzDHGsi7tIQLMMcayLu0hAswxxrIu7SECzDHGsi7tIQLMMcayLu0hAswxxrIu7SECzDHGsi7tIQLMMcayLu0hAswxxrIu7SECzDHGsi7tIQLMMcayLu0hAswxxrIu7SECzDHGsi7tIQLMMcayLu0hAswxxrIu7SECzDHGsi7tIQLMMcayLu0hAswxxrIu7SECzDHGsi7tIQLMMcayLu0hAswxxrIu7SECzDHGsi7tIQLMMcayLu0hAswxxrIu7SECzDHGsi7tIQLMMcayLu0hAswxxrIu7SECzDHGsi7tIQLMMcayLu0hAswxxrIu7SECzDHGsi7tIQLMMcayLu0hAswxxrIu7SECzDHGsi7tIQLMMcayLu0hAswxxrIu7SECzDHGsi7tIQLMMcayLu0hAswxxrIu7SECzDHGsi7tIQLMMcayLu0hAswxxrIu7SECzDHGsi7tIQLMMcayLu0hAswxxrIu7SECzDHGsi7tIQLMMcayLu0hAswxxrIu7SECzDHGsi7tIQLMMcayLu0hAswxxrIu7SECzDHGsi7tIQLMMcayLu0hAswxxrIu7SECzDHGsi7tIQLMMcayLu0hAswxxrIu7SECzDHGsi7tIQLMMcayLu0hAswxxrIu7SECzDHGsi7tIQLMMcayLu0hAswxxrIu7SECzDHGsi7tIQLMMcayLu0hAswxxrIu7SECzDHGsi7tIQLMMcayLu0hAswxxrIu7SECzDHGsi7tIQLMMcayLu0hAswxxrIu7SECzDHGsi7tIQLMMcayLu0hAswxxrIu7SECzDHGsi7tIQLMMcayLu0hAswxxrIu7SECzDHGsi7tIQLMMcayLu0hAswxxrIu7SECzDHGsi7tIQLMMcayLu0hAswxxrIu7SECzDHGsi7tIQLMMcayLu0hAswxxrIu7SECzDHGsi7tIQLMMcayLu0hAswxxrIu7SECzDHGsi7tIQLMMcayLu0hAswxxrIu7SECzDHGsi7tIQLMMcayLu0hAswxxrIu7SECzDHGsi7tIQLMMcayLu0hAswxxrIu7SECzDHGsi7tIQLMMcayLu0hAswxxrIu7SECzDHGsi7tIQLMMcayLu0hAswxxrIu7SECzDHGsi7tIQLMMcayLu0hAswxxrIu7SECzDHGsi7tIQLMMcayLu0hAswxxrIu7SECzDHGsi7tIQLMMcayLu0hAswxxrIu7SECzDHGsi7tIQLMMcayLu0hAswxxrIu7SECzDHGsi7tIQLMMcayLu0hAswxxrIu7SECzDHGsi7tIQLMMcayLu0hAswxxrIu7SECzDHGsi7tIQLMMcayLu0hAswxxrIu7SECzDHGsi7tIQLMMcayLu0hAswxxrIu7SECzDHGsi7tIQLMMcayLu0hAswxxrIu7SECzDHGsi7tIQLMMcayLu0hAswxxrIu7SECzDHGsi7tIQLMMcayLu0hAswxxrIu7SECzDHGsi7tIQLMMcayLu0hAswxxrIu7SECzDHGsi7tIQLMMcayLu0hAswxxrIu7SECzDHGsi7tIQLMMcayLu0hAswxxrIu7SECzDHGsi7tIQLMMcayLu0hAswxxrIu7SECzDHGsi7tIQLMMcayLu0hAswxxrIu7SECzDHGsi7tIQLMMcayLu0hAswxxrIu7SECzDHGsi7tIQLMMcayLu0hAswxxrIu7SECzDHGsi7tIQLMMcayLu0hAswxxrIu7SECzDHGsi7tIQLMMcayLu0hAswxxrIu7SECzDHGsi7tIQLMMcayLu0hAswxxrIu7SECzDHGsi7tIQLMMcayLu0hAswxxrIu7SEBJLv8h/X5HQEku/yH9fkdASS7/If1+R0BJLv8h/X5HQEku/yH9fkdASS7/If1+R0BJLv8h/X5HQEku/yH9fkdASS7/If1+R0BJLv8h/X5HQEku/yH9fkdASS7/If1+R0BJLv8h/X5HQEku/yH9fkdASS7/If1+R0BJLv8h/X5HQEku/yH9fkdASS7/If1+R0BJLv8h/X5HQEku/yH9fkdASS7/If1+R0BJLv8h/X5HQEku/yH9fkdASS7/If1+R0BJLv8h/X5HQEku/yH9fkdASS7/If1+R0BJLv8h/X5HQEku/yH9fkdASS7/If1+R0BJLv8h/X5HQEku/yH9fkdASS7/If1+R0BJLv8h/X5HQEku/yH9fkdASS7/If1+R0BJLv8h/X5HQEku/yH9fkdASS7/If1+R0BJLv8h/X5HQEku/yH9fkdASS7/If1+R0BJLv8h/X5HQEku/yH9fkdASS7/If1+R0BJLv8h/X5HQEku/yH9fkdASS7/If1+R0BJLv8h/X5HQEku/yH9fkdASS7/If1+R0BJLv8h/X5HQEku/yH9fkdASS7/If1+R0BJLv8h/X5HQEku/yH9fkdASS7/If1+R0BJLv8h/X5HQEku/yH9fkdASS7/If1+R0BJLv8h/X5HQEku/yH9fkdASS7/If1+R0BJLv8h/X5HQEku/yH9fkdASS7/If1+R0BJLv8h/X5HQEku/yH9fkdASS7/If1+R0BJLv8h/X5HQEku/yH9fkdASS7/If1+R0BJLv8h/X5HQEku/yH9fkdASS7/If1+R0BJLv8h/X5HQEku/yH9fkdASS7/If1+R0BJLv8h/X5HQEku/yH9fkdASS7/If1+R0BJLv8h/X5HQEku/yH9fkdASS7/If1+R0BJLv8h/X5HQEku/yH9fkdASS7/If1+R0BJLv8h/X5HQEku/yH9fkdASS7/If1+R0BJLv8h/X5HQEku/yH9fkdASS7/If1+R0BJLv8h/X5HQEku/yH9fkdASS7/If1+R0BJLv8h/X5HQEku/yH9fkdASS7/If1+R0BJLv8h/X5HQEku/yH9fkdASS7/If1+R0BJLv8h/X5HQEku/yH9fkdASS7/If1+R0BJLv8h/X5HQEku/yH9fkdASS7/If1+R0BJLv8h/X5HQEku/yH9fkdASS7/If1+R0BJLv8h/X5HQEku/yH9fkdASS7/If1+R0BJLv8h/X5HQEku/yH9fkdASS7/If1+R0BJLv8h/X5HQEku/yH9fkdASS7/If1+R0BJLv8h/X5HQEku/yH9fkdASS7/If1+R0BJLv8h/X5HQEku/yH9fkdASS7/If1+R0BJLv8h/X5HQEku/yH9fkdASS7/If1+R0BJLv8h/X5HQEku/yH9fkdASS7/If1+R0BJLv8h/X5HQEku/yH9fkdASS7/If1+R0BJLv8h/X5HQEku/yH9fkdASS7/If1+R0BJLv8h/X5HQEku/yH9fkdASS7/If1+R0BJLv8h/X5HQEku/yH9fkdASS7/If1+R0BJLv8h/X5HQEku/yH9fkdASS7/If1+R0BJLv8h/X5HQEku/yH9fkdASS7/If1+R0BJLv8h/X5HQEku/yH9fkdASS7/If1+R0BJLv8h/X5HQEku/yH9fkdASS7/If1+R0BJLv8h/X5HQEku/yH9fkdASS7/If1+R0BJLv8h/X5HQEku/yH9fkdASS7/If1+R0BJLv8h/X5HQEku/yH9fkdASS7/If1+R0BJLv8h/X5HQEku/yH9fkdASS7/If1+R0BJLv8h/X5HQEku/yH9fkdASS7/If1+R0BJLv8h/X5HQEku/yH9fkdASS7/If1+R0BJLv8h/X5HQEku/yH9fkdASS7/If1+R0BJLv8h/X5HQEku/yH9fkdASS7/If1+R0BJLv8h/X5HQEku/yH9fkdASS7/If1+R0BJLv8h/X5HQEku/yH9fkdASS7/If1+R0BJLv8h/X5HQEku/yH9fkdASS7/If1+R0BJLv8h/X5HQEku/yH9fkdASS7/If1+R0BJLv8h/X5HQEku/yH9fkdASS7/If1+R0BJLv8h/X5HQEku/yH9fkdASS7/If1+R0BJLv8h/X5HQEku/yH9fkdASS7/If1+R0BJLv8h/X5HQEku/yH9fkdASS7/If1+R0BJLv8h/X5HQEku/yH9fkdASS7/If1+R0BJLv8h/X5HQEku/yH9fkdASS7/If1+R0BJLv8h/X5HQEku/yH9fkdASS7/If1+R0BJLv8h/X5HQEku/yH9fkdASS7/If1+R0BJLv8h/X5HQEku/yH9fkdASS7/If1+R0BJLv8h/X5HQEku/yH9fkdASS7/If1+R0BJLv8h/X5HQEku/yH9fkdASS7/If1+R0BJLv8h/X5HQEku/yH9fkdASS7/If1+R0BJLv8h/X5HQEku/yH9fkdASS7/If1+R0BJLv8h/X5HQEku/yH9fkdASS7/If1+R0BJLv8h/X5HQEku/yH9fkdASS7/If1+R0BJLv8h/X5HQEku/yH9fkdASS7/If1+R0BJLv8h/X5HQEku/yH9fkdASS7/If1+R0BJLv8h/X5HQEku/yH9fkdASS7/If1+R0BJLv8h/X5HQEku/yH9fkdASS7/If1+R0BJLv8h/X5HQEku/yH9fkdASS7/If1+R0BJLv8h/X5HQEku/yH9fkdASS7/If1+R0BJLv8h/X5HQEku/yH9fkdASS7/If1+R0BJLv8h/X5HQEku/yH9fkdASS7/If1+R0BJLv8h/X5HQEku/yH9fkdASS7/If1+R0BJLv8h/X5HQEku/yH9fkdASS7/If1+R0BJLv8h/X5HQEku/yH9fkdASS7/If1+R0BJLv8h/X5HQEku/yH9fkdASS7/If1+R0BJLv8h/X5HQEku/yH9fkdASS7/If1+R0BJLv8h/X5HQEku/yH9fkdASS7/If1+R0BJLv8h/X5HQEku/yH9fkdASS7/If1+R0BJLv8h/X5HQEku/yH9fkdASS7/If1+R0BJLv8h/X5HQEku/yH9fkdASS7/If1+R0BJLv8h/X5HQEku/yH9fkdASS7/If1+R0BJLv8h/X5HQEku/yH9fkdASS7/If1+R0BJLv8h/X5HQEku/yH9fkdASS7/If1+R0BJLv8h/X5HQEku/yH9fkdASS7/If1+R0BJLv8h/X5HQEku/yH9fkdASS7/If1+R0BJLv8h/X5HQEku/yH9fkdASS7/If1+R0BJLv8h/X5HQEku/yH9fkdASS7/If1+R0BJLv8h/X5HQEku/yH9fkdASS7/If1+R0BJLv8h/X5HQEku/yH9fkdASS7/If1+R0BJLv8h/X5HQEku/yH9fkdASS7/If1+R0BJLv8h/X5HQEku/yH9fkdASS7/If1+R0BJLv8h/X5HQEku/yH9fkdASS7/If1+R0BJLv8h/X5HQEku/yH9fkdASS7/If1+R0BJLv8h/X5HQEku/yH9fkdASS7/If1+R0BJLv8h/X5HQEku/yH9fkdASS7/If1+R0BJLv8h/X5HQEku/yH9fkdASS7/If1+R0BJLv8h/X5HQEku/yH9fkdASS7/If1+R0BJLv8h/X5HQEku/yH9fkdASS7/If1+R0BJLv8h/X5HQEku/yH9fkdASS7/If1+R0BJLv8h/X5HQEku/yH9fkdASS7/If1+R0BJLv8h/X5HQEku/yH9fkdASS7/If1+R0BJLv8h/X5HQEku/yH9fkdASS7/If1+R0BJLv8h/X5HQEku/yH9fkdASS7/If1+R0BJLv8h/X5HQEku/yH9fkdASS7/If1+R0BJLv8h/X5HQEku/yH9fkdASS7/If1+R0BJLv8h/X5HQEku/yH9fkdASS7/If1+R0BJLv8h/X5HQEku/yH9fkdASS7/If1+R0BJLv8h/X5HQEku/yH9fkdASS7/If1+R0BJLv8h/X5HQEku/yH9fkdASS7/If1+R0BJLv8h/X5HQEku/yH9fkdASS7/If1+R0BJLv8h/X5HQEku/yH9fkdASS7/If1+R0BJLv8h/X5HQEku/yH9fkdASS7/If1+R0BJLv8h/X5HQEku/yH9fkdASS7/If1+R0BJLv8h/X5HQEku/yH9fkdASS7/If1+R0BJLv8h/X5HQEku/yH9fkdASS7/If1+R0BJLv8h/X5HQEku/yH9fkdASS7/If1+R0BJLv8h/X5HQEku/yH9fkdASS7/If1+R0BJLv8h/X5HQEku/yH9fkdASS7/If1+R0BJLv8h/X5HQEku/yH9fkdASS7/If1+R0BJLv8h/X5HQEku/yH9fkdA+THmriUUQUD5MeauJRRBQPkx5q4lFEFA+THmriUUQUD5MeauJRRBQPkx5q4lFEFA+THmriUUQUD5MeauJRRBQPkx5q4lFEFA+THmriUUQUD5MeauJRRBQPkx5q4lFEFA+THmriUUQUD5MeauJRRBQPkx5q4lFEFA+THmriUUQUD5MeauJRRBQPkx5q4lFEFA+THmriUUQUD5MeauJRRBQPkx5q4lFEFA+THmriUUQUD5MeauJRRBQPkx5q4lFEFA+THmriUUQUD5MeauJRRBQPkx5q4lFEFA+THmriUUQUD5MeauJRRBQPkx5q4lFEFA+THmriUUQUD5MeauJRRBQPkx5q4lFEFA+THmriUUQUD5MeauJRRBQPkx5q4lFEFA+THmriUUQUD5MeauJRRBQPkx5q4lFEFA+THmriUUQUD5MeauJRRBQPkx5q4lFEFA+THmriUUQUD5MeauJRRBQPkx5q4lFEFA+THmriUUQUD5MeauJRRBQPkx5q4lFEFA+THmriUUQUD5MeauJRRBQPkx5q4lFEFA+THmriUUQUD5MeauJRRBQPkx5q4lFEFA+THmriUUQUD5MeauJRRBQPkx5q4lFEFA+THmriUUQUD5MeauJRRBQPkx5q4lFEFA+THmriUUQUD5MeauJRRBQPkx5q4lFEFA+THmriUUQUD5MeauJRRBQPkx5q4lFEFA+THmriUUQUD5MeauJRRBQPkx5q4lFEFA+THmriUUQUD5MeauJRRBQPkx5q4lFEFA+THmriUUQUD5MeauJRRBQPkx5q4lFEFA+THmriUUQUD5MeauJRRBQPkx5q4lFEFA+THmriUUQUD5MeauJRRBQPkx5q4lFEFA+THmriUUQUD5MeauJRRBQPkx5q4lFEFA+THmriUUQUD5MeauJRRBQPkx5q4lFEFA+THmriUUQUD5MeauJRRBQPkx5q4lFEFA+THmriUUQUD5MeauJRRBQPkx5q4lFEFA+THmriUUQUD5MeauJRRBQPkx5q4lFEFA+THmriUUQUD5MeauJRRBQPkx5q4lFEFA+THmriUUQUD5MeauJRRBQPkx5q4lFEFA+THmriUUQUD5MeauJRRBQPkx5q4lFEFA+THmriUUQUD5MeauJRRBQPkx5q4lFEFA+THmriUUQUD5MeauJRRBQPkx5q4lFEFA+THmriUUQUD5MeauJRRBQPkx5q4lFEFA+THmriUUQUD5MeauJRRBQPkx5q4lFEFA+THmriUUQUD5MeauJRRBQPkx5q4lFEFA+THmriUUQUD5MeauJRRBQPkx5q4lFEFA+THmriUUQUD5MeauJRRBQPkx5q4lFEFA+THmriUUQUD5MeauJRRBQPkx5q4lFEFA+THmriUUQUD5MeauJRRBQPkx5q4lFEFA+THmriUUQUD5MeauJRRBQPkx5q4lFEFA+THmriUUQUD5MeauJRRBQPkx5q4lFEFA+THmriUUQUD5MeauJRRBQPkx5q4lFEFA+THmriUUQUD5MeauJRRBQPkx5q4lFEFA+THmriUUQUD5MeauJRRBQPkx5q4lFEFA+THmriUUQUD5MeauJRRBQPkx5q4lFEFA+THmriUUQUD5MeauJRRBQPkx5q4lFEFA+THmriUUQUD5MeauJRRBQPkx5q4lFEFA+THmriUUQUD5MeauJRRBQPkx5q4lFEFA+THmriUUQUD5MeauJRRBQPkx5q4lFEFA+THmriUUQUD5MeauJRRBQPkx5q4lFEFA+THmriUUQUD5MeauJRRBQPkx5q4lFEFA+THmriUUQUD5MeauJRRBQPkx5q4lFEFA+THmriUUQUD5MeauJRRBQPkx5q4lFEFA+THmriUUQUD5MeauJRRBQPkx5q4lFEFA+THmriUUQUD5MeauJRRBQPkx5q4lFEFA+THmriUUQUD5MeauJRRBQPkx5q4lFEFA+THmriUUQUD5MeauJRRBQPkx5q4lFEFA+THmriUUQUD5MeauJRRBQPkx5q4lFEFA+THmriUUQUD5MeauJRRBQPkx5q4lFEFA+THmriUUQUD5MeauJRRBQPkx5q4lFEFA+THmriUUQUD5MeauJRRBQPkx5q4lFEFA+THmriUUQUD5MeauJRRBQPkx5q4lFEFA+THmriUUQUD5MeauJRRBQPkx5q4lFEFA+THmriUUQUD5MeauJRRBQPkx5q4lFEFA+THmriUUQUD5MeauJRRBQPkx5q4lFEFA+THmriUUQUD5MeauJRRBQPkx5q4lFEFA+THmriUUQUD5MeauJRRBQPkx5q4lFEFA+THmriUUQUD5MeauJRRBQPkx5q4lFEFA+THmriUUQUD5MeauJRRBQPkx5q4lFEFA+THmriUUQUD5MeauJRRBQPkx5q4lFEFA+THmriUUQUD5MeauJRRBQPkx5q4lFEFA+THmriUUQUD5MeauJRRBQPkx5q4lFEFA+THmriUUQUD5MeauJRRBQPkx5q4lFEFA+THmriUUQUD5MeauJRRBQPkx5q4lFEFA+THmriUUQUD5MeauJRRBQPkx5q4lFEFA+THmriUUQUD5MeauJRRBQPkx5q4lFEFA+THmriUUQUD5MeauJRRBQPkx5q4lFEFA+THmriUUQUD5MeauJRRBQPkx5q4lFEFA+THmriUUQUD5MeauJRRBQPkx5q4lFEFA+THmriUUQUD5MeauJRRBQPkx5q4lFEFA+THmriUUQUD5MeauJRRBQPkx5q4lFEFA+THmriUUQUD5MeauJRRBQPkx5q4lFEFA+THmriUUQUD5MeauJRRBQPkx5q4lFEFA+THmriUUQUD5MeauJRRBQPkx5q4lFEFA+THmriUUQUD5MeauJRRBQPkx5q4lFEFA+THmriUUQUD5MeauJRRBQPkx5q4lFEFA+THmriUUQUD5MeauJRRBQPkx5q4lFEFA+THmriUUQUD5MeauJRRBQPkx5q4lFEFA+THmriUUQUD5MeauJRRBQPkx5q4lFEFA+THmriUUQUD5MeauJRRBQPkx5q4lFEFA+THmriUUQUD5MeauJRRBQPkx5q4lFEFA+THmriUUQUD5MeauJRRBQPkx5q4lFEFA+THmriUUQUD5MeauJRRBQPkx5q4lFEFA+THmriUUQUD5MeauJRRBQPkx5q4lFEFA+THmriUUQUD5MeauJRRBQPkx5q4lFEFA+THmriUUQUD5MeauJRRBQPkx5q4lFEFA+THmriUUQUD5MeauJRRBQPkx5q4lFEFA+THmriUUQUD5MeauJRRBQPkx5q4lFEFA+THmriUUQUD5MeauJRRBQPkx5q4lFEFA+THmriUUQUD5MeauJRRBQPkx5q4lFEFA+THmriUUQUD5MeauJRRBQPkx5q4lFEFA+THmriUUQUD5MeauJRRBQPkx5q4lFEFA+THmriUUQUD5MeauJRRBQPkx5q4lFEFA+THmriUUQUD5MeauJRRBQPkx5q4lFEFA+THmriUUQUD5MeauJRRBQPkx5q4lFEFA+THmriUUQUD5MeauJRRBQPkx5q4lFEFA+THmriUUQUD5MeauJRRBQPkx5q4lFEFA+THmriUUQUD5MeauJRRBQPkx5q4lFEFA+THmriUUQUD5MeauJRRBQPkx5q4lFEFA+THmriUUQUD5MeauJRRBQPkx5q4lFEFA+THmriUUQUD5MeauJRRBQPkx5q4lFEFA+THmriUUQUD5MeauJRRBQPkx5q4lFEFA+THmriUUQUD5MeauJRRBQPkx5q4lFEFA+THmriUUQUD5MeauJRRBQPkx5q4lFEFA+THmriUUQUD5MeauJRRBQPkx5q4lFEFA+THmriUUQUD5MeauJRRBQPkx5q4lFEFA+THmriUUQUD5MeauJRRBQPkx5q4lFEFA+THmriUUQUD5MeauJRRBQPkx5q4lFEFA+THmriUUQUD5MeauJRRBQPkx5q4lFEFA+THmriUUQUD5MeauJRRBQPkx5q4lFEFA+THmriUUQUD5MeauJRRBQPkx5q4lFEFA+THmriUUQUD5MeauJRRBQPkx5q4lFEFA+THmriUUQUA=\",\"dtype\":\"float64\",\"shape\":[1000]}},\"selected\":{\"id\":\"1244\",\"type\":\"Selection\"},\"selection_policy\":{\"id\":\"1243\",\"type\":\"UnionRenderers\"}},\"id\":\"1206\",\"type\":\"ColumnDataSource\"},{\"attributes\":{},\"id\":\"1135\",\"type\":\"ResetTool\"},{\"attributes\":{\"line_alpha\":0.1,\"line_color\":\"#1f77b4\",\"line_width\":2,\"x\":{\"field\":\"x\"},\"y\":{\"field\":\"y\"}},\"id\":\"1146\",\"type\":\"Line\"},{\"attributes\":{},\"id\":\"1240\",\"type\":\"Selection\"},{\"attributes\":{\"line_color\":\"#2ba02b\",\"line_width\":2,\"x\":{\"field\":\"x\"},\"y\":{\"field\":\"y\"}},\"id\":\"1155\",\"type\":\"Line\"},{\"attributes\":{},\"id\":\"1127\",\"type\":\"BasicTicker\"},{\"attributes\":{},\"id\":\"1242\",\"type\":\"Selection\"},{\"attributes\":{},\"id\":\"1225\",\"type\":\"UnionRenderers\"},{\"attributes\":{},\"id\":\"1218\",\"type\":\"BasicTickFormatter\"},{\"attributes\":{},\"id\":\"1230\",\"type\":\"Selection\"},{\"attributes\":{},\"id\":\"1239\",\"type\":\"UnionRenderers\"},{\"attributes\":{\"data_source\":{\"id\":\"1149\",\"type\":\"ColumnDataSource\"},\"glyph\":{\"id\":\"1150\",\"type\":\"Line\"},\"hover_glyph\":null,\"muted_glyph\":null,\"nonselection_glyph\":{\"id\":\"1151\",\"type\":\"Line\"},\"selection_glyph\":null,\"view\":{\"id\":\"1153\",\"type\":\"CDSView\"}},\"id\":\"1152\",\"type\":\"GlyphRenderer\"},{\"attributes\":{\"text\":\"\"},\"id\":\"1217\",\"type\":\"Title\"},{\"attributes\":{\"callback\":null,\"data\":{\"x\":[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,295,296,297,298,299,300,301,302,303,304,305,306,307,308,309,310,311,312,313,314,315,316,317,318,319,320,321,322,323,324,325,326,327,328,329,330,331,332,333,334,335,336,337,338,339,340,341,342,343,344,345,346,347,348,349,350,351,352,353,354,355,356,357,358,359,360,361,362,363,364,365,366,367,368,369,370,371,372,373,374,375,376,377,378,379,380,381,382,383,384,385,386,387,388,389,390,391,392,393,394,395,396,397,398,399,400,401,402,403,404,405,406,407,408,409,410,411,412,413,414,415,416,417,418,419,420,421,422,423,424,425,426,427,428,429,430,431,432,433,434,435,436,437,438,439,440,441,442,443,444,445,446,447,448,449,450,451,452,453,454,455,456,457,458,459,460,461,462,463,464,465,466,467,468,469,470,471,472,473,474,475,476,477,478,479,480,481,482,483,484,485,486,487,488,489,490,491,492,493,494,495,496,497,498,499,500,501,502,503,504,505,506,507,508,509,510,511,512,513,514,515,516,517,518,519,520,521,522,523,524,525,526,527,528,529,530,531,532,533,534,535,536,537,538,539,540,541,542,543,544,545,546,547,548,549,550,551,552,553,554,555,556,557,558,559,560,561,562,563,564,565,566,567,568,569,570,571,572,573,574,575,576,577,578,579,580,581,582,583,584,585,586,587,588,589,590,591,592,593,594,595,596,597,598,599,600,601,602,603,604,605,606,607,608,609,610,611,612,613,614,615,616,617,618,619,620,621,622,623,624,625,626,627,628,629,630,631,632,633,634,635,636,637,638,639,640,641,642,643,644,645,646,647,648,649,650,651,652,653,654,655,656,657,658,659,660,661,662,663,664,665,666,667,668,669,670,671,672,673,674,675,676,677,678,679,680,681,682,683,684,685,686,687,688,689,690,691,692,693,694,695,696,697,698,699,700,701,702,703,704,705,706,707,708,709,710,711,712,713,714,715,716,717,718,719,720,721,722,723,724,725,726,727,728,729,730,731,732,733,734,735,736,737,738,739,740,741,742,743,744,745,746,747,748,749,750,751,752,753,754,755,756,757,758,759,760,761,762,763,764,765,766,767,768,769,770,771,772,773,774,775,776,777,778,779,780,781,782,783,784,785,786,787,788,789,790,791,792,793,794,795,796,797,798,799,800,801,802,803,804,805,806,807,808,809,810,811,812,813,814,815,816,817,818,819,820,821,822,823,824,825,826,827,828,829,830,831,832,833,834,835,836,837,838,839,840,841,842,843,844,845,846,847,848,849,850,851,852,853,854,855,856,857,858,859,860,861,862,863,864,865,866,867,868,869,870,871,872,873,874,875,876,877,878,879,880,881,882,883,884,885,886,887,888,889,890,891,892,893,894,895,896,897,898,899,900,901,902,903,904,905,906,907,908,909,910,911,912,913,914,915,916,917,918,919,920,921,922,923,924,925,926,927,928,929,930,931,932,933,934,935,936,937,938,939,940,941,942,943,944,945,946,947,948,949,950,951,952,953,954,955,956,957,958,959,960,961,962,963,964,965,966,967,968,969,970,971,972,973,974,975,976,977,978,979,980,981,982,983,984,985,986,987,988,989,990,991,992,993,994,995,996,997,998,999],\"y\":{\"__ndarray__\":\"c2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEBzaJHtfG80QHNoke18bzRAc2iR7XxvNEA=\",\"dtype\":\"float64\",\"shape\":[1000]}},\"selected\":{\"id\":\"1246\",\"type\":\"Selection\"},\"selection_policy\":{\"id\":\"1245\",\"type\":\"UnionRenderers\"}},\"id\":\"1211\",\"type\":\"ColumnDataSource\"},{\"attributes\":{},\"id\":\"1236\",\"type\":\"BasicTickFormatter\"},{\"attributes\":{},\"id\":\"1245\",\"type\":\"UnionRenderers\"},{\"attributes\":{},\"id\":\"1183\",\"type\":\"PanTool\"},{\"attributes\":{\"ticker\":{\"id\":\"1122\",\"type\":\"BasicTicker\"}},\"id\":\"1125\",\"type\":\"Grid\"},{\"attributes\":{\"bottom_units\":\"screen\",\"fill_alpha\":{\"value\":0.5},\"fill_color\":{\"value\":\"lightgrey\"},\"left_units\":\"screen\",\"level\":\"overlay\",\"line_alpha\":{\"value\":1.0},\"line_color\":{\"value\":\"black\"},\"line_dash\":[4,4],\"line_width\":{\"value\":2},\"render_mode\":\"css\",\"right_units\":\"screen\",\"top_units\":\"screen\"},\"id\":\"1238\",\"type\":\"BoxAnnotation\"},{\"attributes\":{},\"id\":\"1179\",\"type\":\"BasicTicker\"},{\"attributes\":{\"line_alpha\":0.1,\"line_color\":\"#1f77b4\",\"line_width\":2,\"x\":{\"field\":\"x\"},\"y\":{\"field\":\"y\"}},\"id\":\"1151\",\"type\":\"Line\"},{\"attributes\":{},\"id\":\"1228\",\"type\":\"Selection\"},{\"attributes\":{},\"id\":\"1226\",\"type\":\"Selection\"},{\"attributes\":{\"dimension\":1,\"ticker\":{\"id\":\"1179\",\"type\":\"BasicTicker\"}},\"id\":\"1182\",\"type\":\"Grid\"},{\"attributes\":{\"text\":\"\"},\"id\":\"1233\",\"type\":\"Title\"},{\"attributes\":{},\"id\":\"1244\",\"type\":\"Selection\"},{\"attributes\":{},\"id\":\"1220\",\"type\":\"BasicTickFormatter\"},{\"attributes\":{},\"id\":\"1131\",\"type\":\"PanTool\"},{\"attributes\":{},\"id\":\"1174\",\"type\":\"BasicTicker\"},{\"attributes\":{\"bottom_units\":\"screen\",\"fill_alpha\":{\"value\":0.5},\"fill_color\":{\"value\":\"lightgrey\"},\"left_units\":\"screen\",\"level\":\"overlay\",\"line_alpha\":{\"value\":1.0},\"line_color\":{\"value\":\"black\"},\"line_dash\":[4,4],\"line_width\":{\"value\":2},\"render_mode\":\"css\",\"right_units\":\"screen\",\"top_units\":\"screen\"},\"id\":\"1222\",\"type\":\"BoxAnnotation\"},{\"attributes\":{\"below\":[{\"id\":\"1121\",\"type\":\"LinearAxis\"}],\"center\":[{\"id\":\"1125\",\"type\":\"Grid\"},{\"id\":\"1130\",\"type\":\"Grid\"}],\"frame_height\":150,\"frame_width\":600,\"left\":[{\"id\":\"1126\",\"type\":\"LinearAxis\"}],\"renderers\":[{\"id\":\"1147\",\"type\":\"GlyphRenderer\"},{\"id\":\"1152\",\"type\":\"GlyphRenderer\"},{\"id\":\"1157\",\"type\":\"GlyphRenderer\"},{\"id\":\"1162\",\"type\":\"GlyphRenderer\"}],\"title\":{\"id\":\"1217\",\"type\":\"Title\"},\"toolbar\":{\"id\":\"1137\",\"type\":\"Toolbar\"},\"toolbar_location\":null,\"x_range\":{\"id\":\"1165\",\"type\":\"Range1d\"},\"x_scale\":{\"id\":\"1117\",\"type\":\"LinearScale\"},\"y_range\":{\"id\":\"1115\",\"type\":\"DataRange1d\"},\"y_scale\":{\"id\":\"1119\",\"type\":\"LinearScale\"}},\"id\":\"1112\",\"subtype\":\"Figure\",\"type\":\"Plot\"},{\"attributes\":{\"callback\":null,\"end\":999},\"id\":\"1165\",\"type\":\"Range1d\"},{\"attributes\":{},\"id\":\"1227\",\"type\":\"UnionRenderers\"},{\"attributes\":{\"data_source\":{\"id\":\"1211\",\"type\":\"ColumnDataSource\"},\"glyph\":{\"id\":\"1212\",\"type\":\"Line\"},\"hover_glyph\":null,\"muted_glyph\":null,\"nonselection_glyph\":{\"id\":\"1213\",\"type\":\"Line\"},\"selection_glyph\":null,\"view\":{\"id\":\"1215\",\"type\":\"CDSView\"}},\"id\":\"1214\",\"type\":\"GlyphRenderer\"},{\"attributes\":{\"axis_label\":\"alpha\",\"formatter\":{\"id\":\"1218\",\"type\":\"BasicTickFormatter\"},\"ticker\":{\"id\":\"1127\",\"type\":\"BasicTicker\"}},\"id\":\"1126\",\"type\":\"LinearAxis\"},{\"attributes\":{},\"id\":\"1229\",\"type\":\"UnionRenderers\"},{\"attributes\":{\"line_color\":\"#ff7e0e\",\"line_width\":2,\"x\":{\"field\":\"x\"},\"y\":{\"field\":\"y\"}},\"id\":\"1150\",\"type\":\"Line\"},{\"attributes\":{},\"id\":\"1246\",\"type\":\"Selection\"},{\"attributes\":{\"source\":{\"id\":\"1211\",\"type\":\"ColumnDataSource\"}},\"id\":\"1215\",\"type\":\"CDSView\"},{\"attributes\":{\"dimension\":1,\"ticker\":{\"id\":\"1127\",\"type\":\"BasicTicker\"}},\"id\":\"1130\",\"type\":\"Grid\"},{\"attributes\":{\"callback\":null,\"data\":{\"x\":[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,295,296,297,298,299,300,301,302,303,304,305,306,307,308,309,310,311,312,313,314,315,316,317,318,319,320,321,322,323,324,325,326,327,328,329,330,331,332,333,334,335,336,337,338,339,340,341,342,343,344,345,346,347,348,349,350,351,352,353,354,355,356,357,358,359,360,361,362,363,364,365,366,367,368,369,370,371,372,373,374,375,376,377,378,379,380,381,382,383,384,385,386,387,388,389,390,391,392,393,394,395,396,397,398,399,400,401,402,403,404,405,406,407,408,409,410,411,412,413,414,415,416,417,418,419,420,421,422,423,424,425,426,427,428,429,430,431,432,433,434,435,436,437,438,439,440,441,442,443,444,445,446,447,448,449,450,451,452,453,454,455,456,457,458,459,460,461,462,463,464,465,466,467,468,469,470,471,472,473,474,475,476,477,478,479,480,481,482,483,484,485,486,487,488,489,490,491,492,493,494,495,496,497,498,499,500,501,502,503,504,505,506,507,508,509,510,511,512,513,514,515,516,517,518,519,520,521,522,523,524,525,526,527,528,529,530,531,532,533,534,535,536,537,538,539,540,541,542,543,544,545,546,547,548,549,550,551,552,553,554,555,556,557,558,559,560,561,562,563,564,565,566,567,568,569,570,571,572,573,574,575,576,577,578,579,580,581,582,583,584,585,586,587,588,589,590,591,592,593,594,595,596,597,598,599,600,601,602,603,604,605,606,607,608,609,610,611,612,613,614,615,616,617,618,619,620,621,622,623,624,625,626,627,628,629,630,631,632,633,634,635,636,637,638,639,640,641,642,643,644,645,646,647,648,649,650,651,652,653,654,655,656,657,658,659,660,661,662,663,664,665,666,667,668,669,670,671,672,673,674,675,676,677,678,679,680,681,682,683,684,685,686,687,688,689,690,691,692,693,694,695,696,697,698,699,700,701,702,703,704,705,706,707,708,709,710,711,712,713,714,715,716,717,718,719,720,721,722,723,724,725,726,727,728,729,730,731,732,733,734,735,736,737,738,739,740,741,742,743,744,745,746,747,748,749,750,751,752,753,754,755,756,757,758,759,760,761,762,763,764,765,766,767,768,769,770,771,772,773,774,775,776,777,778,779,780,781,782,783,784,785,786,787,788,789,790,791,792,793,794,795,796,797,798,799,800,801,802,803,804,805,806,807,808,809,810,811,812,813,814,815,816,817,818,819,820,821,822,823,824,825,826,827,828,829,830,831,832,833,834,835,836,837,838,839,840,841,842,843,844,845,846,847,848,849,850,851,852,853,854,855,856,857,858,859,860,861,862,863,864,865,866,867,868,869,870,871,872,873,874,875,876,877,878,879,880,881,882,883,884,885,886,887,888,889,890,891,892,893,894,895,896,897,898,899,900,901,902,903,904,905,906,907,908,909,910,911,912,913,914,915,916,917,918,919,920,921,922,923,924,925,926,927,928,929,930,931,932,933,934,935,936,937,938,939,940,941,942,943,944,945,946,947,948,949,950,951,952,953,954,955,956,957,958,959,960,961,962,963,964,965,966,967,968,969,970,971,972,973,974,975,976,977,978,979,980,981,982,983,984,985,986,987,988,989,990,991,992,993,994,995,996,997,998,999],\"y\":{\"__ndarray__\":\"Dwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEAPC7WmeUckQA8LtaZ5RyRADwu1pnlHJEA=\",\"dtype\":\"float64\",\"shape\":[1000]}},\"selected\":{\"id\":\"1226\",\"type\":\"Selection\"},\"selection_policy\":{\"id\":\"1225\",\"type\":\"UnionRenderers\"}},\"id\":\"1149\",\"type\":\"ColumnDataSource\"},{\"attributes\":{\"line_color\":\"#1f77b3\",\"line_width\":2,\"x\":{\"field\":\"x\"},\"y\":{\"field\":\"y\"}},\"id\":\"1145\",\"type\":\"Line\"},{\"attributes\":{\"line_alpha\":0.1,\"line_color\":\"#1f77b4\",\"line_width\":2,\"x\":{\"field\":\"x\"},\"y\":{\"field\":\"y\"}},\"id\":\"1213\",\"type\":\"Line\"},{\"attributes\":{\"callback\":null},\"id\":\"1167\",\"type\":\"DataRange1d\"},{\"attributes\":{},\"id\":\"1122\",\"type\":\"BasicTicker\"},{\"attributes\":{},\"id\":\"1224\",\"type\":\"Selection\"},{\"attributes\":{\"source\":{\"id\":\"1144\",\"type\":\"ColumnDataSource\"}},\"id\":\"1148\",\"type\":\"CDSView\"},{\"attributes\":{\"callback\":null,\"data\":{\"x\":[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,295,296,297,298,299,300,301,302,303,304,305,306,307,308,309,310,311,312,313,314,315,316,317,318,319,320,321,322,323,324,325,326,327,328,329,330,331,332,333,334,335,336,337,338,339,340,341,342,343,344,345,346,347,348,349,350,351,352,353,354,355,356,357,358,359,360,361,362,363,364,365,366,367,368,369,370,371,372,373,374,375,376,377,378,379,380,381,382,383,384,385,386,387,388,389,390,391,392,393,394,395,396,397,398,399,400,401,402,403,404,405,406,407,408,409,410,411,412,413,414,415,416,417,418,419,420,421,422,423,424,425,426,427,428,429,430,431,432,433,434,435,436,437,438,439,440,441,442,443,444,445,446,447,448,449,450,451,452,453,454,455,456,457,458,459,460,461,462,463,464,465,466,467,468,469,470,471,472,473,474,475,476,477,478,479,480,481,482,483,484,485,486,487,488,489,490,491,492,493,494,495,496,497,498,499,500,501,502,503,504,505,506,507,508,509,510,511,512,513,514,515,516,517,518,519,520,521,522,523,524,525,526,527,528,529,530,531,532,533,534,535,536,537,538,539,540,541,542,543,544,545,546,547,548,549,550,551,552,553,554,555,556,557,558,559,560,561,562,563,564,565,566,567,568,569,570,571,572,573,574,575,576,577,578,579,580,581,582,583,584,585,586,587,588,589,590,591,592,593,594,595,596,597,598,599,600,601,602,603,604,605,606,607,608,609,610,611,612,613,614,615,616,617,618,619,620,621,622,623,624,625,626,627,628,629,630,631,632,633,634,635,636,637,638,639,640,641,642,643,644,645,646,647,648,649,650,651,652,653,654,655,656,657,658,659,660,661,662,663,664,665,666,667,668,669,670,671,672,673,674,675,676,677,678,679,680,681,682,683,684,685,686,687,688,689,690,691,692,693,694,695,696,697,698,699,700,701,702,703,704,705,706,707,708,709,710,711,712,713,714,715,716,717,718,719,720,721,722,723,724,725,726,727,728,729,730,731,732,733,734,735,736,737,738,739,740,741,742,743,744,745,746,747,748,749,750,751,752,753,754,755,756,757,758,759,760,761,762,763,764,765,766,767,768,769,770,771,772,773,774,775,776,777,778,779,780,781,782,783,784,785,786,787,788,789,790,791,792,793,794,795,796,797,798,799,800,801,802,803,804,805,806,807,808,809,810,811,812,813,814,815,816,817,818,819,820,821,822,823,824,825,826,827,828,829,830,831,832,833,834,835,836,837,838,839,840,841,842,843,844,845,846,847,848,849,850,851,852,853,854,855,856,857,858,859,860,861,862,863,864,865,866,867,868,869,870,871,872,873,874,875,876,877,878,879,880,881,882,883,884,885,886,887,888,889,890,891,892,893,894,895,896,897,898,899,900,901,902,903,904,905,906,907,908,909,910,911,912,913,914,915,916,917,918,919,920,921,922,923,924,925,926,927,928,929,930,931,932,933,934,935,936,937,938,939,940,941,942,943,944,945,946,947,948,949,950,951,952,953,954,955,956,957,958,959,960,961,962,963,964,965,966,967,968,969,970,971,972,973,974,975,976,977,978,979,980,981,982,983,984,985,986,987,988,989,990,991,992,993,994,995,996,997,998,999],\"y\":{\"__ndarray__\":\"b2Qe+YNhF0BvZB75g2EXQG9kHvmDYRdAb2Qe+YNhF0BvZB75g2EXQG9kHvmDYRdAb2Qe+YNhF0BvZB75g2EXQG9kHvmDYRdAb2Qe+YNhF0BvZB75g2EXQG9kHvmDYRdAb2Qe+YNhF0BvZB75g2EXQG9kHvmDYRdAb2Qe+YNhF0BvZB75g2EXQG9kHvmDYRdAUkSGVbzxGUBSRIZVvPEZQFJEhlW88RlAUkSGVbzxGUBSRIZVvPEZQFJEhlW88RlAUkSGVbzxGUBSRIZVvPEZQFJEhlW88RlAUkSGVbzxGUBSRIZVvPEZQFJEhlW88RlAUkSGVbzxGUDIzXADPr8cQMjNcAM+vxxAyM1wAz6/HEDIzXADPr8cQMjNcAM+vxxAyM1wAz6/HEDIzXADPr8cQMjNcAM+vxxAyM1wAz6/HEDIzXADPr8cQMjNcAM+vxxAyM1wAz6/HEDIzXADPr8cQMjNcAM+vxxAyM1wAz6/HEDIzXADPr8cQMjNcAM+vxxAyM1wAz6/HEDIzXADPr8cQMjNcAM+vxxAyM1wAz6/HEDIzXADPr8cQMjNcAM+vxxA9iNFZFhlIED2I0VkWGUgQPYjRWRYZSBA9iNFZFhlIED2I0VkWGUgQPYjRWRYZSBA9iNFZFhlIED2I0VkWGUgQPYjRWRYZSBA9iNFZFhlIED2I0VkWGUgQPYjRWRYZSBA9iNFZFhlIED2I0VkWGUgQPYjRWRYZSBA9iNFZFhlIED2I0VkWGUgQPYjRWRYZSBA9iNFZFhlIED2I0VkWGUgQPYjRWRYZSBA9iNFZFhlIED2I0VkWGUgQPYjRWRYZSBA9iNFZFhlIED2I0VkWGUgQPYjRWRYZSBA9iNFZFhlIED2I0VkWGUgQPYjRWRYZSBA9iNFZFhlIED2I0VkWGUgQPYjRWRYZSBA9iNFZFhlIED2I0VkWGUgQPYjRWRYZSBA9iNFZFhlIED2I0VkWGUgQPYjRWRYZSBA9iNFZFhlIED2I0VkWGUgQPYjRWRYZSBA9iNFZFhlIED2I0VkWGUgQPYjRWRYZSBA9iNFZFhlIED2I0VkWGUgQPYjRWRYZSBA9iNFZFhlIED2I0VkWGUgQPYjRWRYZSBA9iNFZFhlIED2I0VkWGUgQPYjRWRYZSBA9iNFZFhlIED2I0VkWGUgQPYjRWRYZSBA9iNFZFhlIED2I0VkWGUgQPYjRWRYZSBA9iNFZFhlIED2I0VkWGUgQPYjRWRYZSBA9iNFZFhlIED2I0VkWGUgQPYjRWRYZSBA9iNFZFhlIED2I0VkWGUgQPYjRWRYZSBA9iNFZFhlIED2I0VkWGUgQPYjRWRYZSBA9iNFZFhlIED2I0VkWGUgQPYjRWRYZSBA9iNFZFhlIED2I0VkWGUgQPYjRWRYZSBA9iNFZFhlIED2I0VkWGUgQPYjRWRYZSBA9iNFZFhlIED2I0VkWGUgQPYjRWRYZSBA9iNFZFhlIED2I0VkWGUgQPYjRWRYZSBA9iNFZFhlIED2I0VkWGUgQPYjRWRYZSBA9iNFZFhlIED2I0VkWGUgQPYjRWRYZSBA9iNFZFhlIED2I0VkWGUgQPYjRWRYZSBA9iNFZFhlIED2I0VkWGUgQPYjRWRYZSBA9iNFZFhlIED2I0VkWGUgQPYjRWRYZSBA9iNFZFhlIED2I0VkWGUgQPYjRWRYZSBA9iNFZFhlIED2I0VkWGUgQPYjRWRYZSBA9iNFZFhlIED2I0VkWGUgQPYjRWRYZSBA9iNFZFhlIED2I0VkWGUgQPYjRWRYZSBA9iNFZFhlIED2I0VkWGUgQPYjRWRYZSBA9iNFZFhlIED2I0VkWGUgQPYjRWRYZSBA9iNFZFhlIED2I0VkWGUgQPYjRWRYZSBA9iNFZFhlIED2I0VkWGUgQPYjRWRYZSBA9iNFZFhlIED2I0VkWGUgQPYjRWRYZSBA9iNFZFhlIED2I0VkWGUgQPYjRWRYZSBA9iNFZFhlIED2I0VkWGUgQPYjRWRYZSBA9iNFZFhlIED2I0VkWGUgQPYjRWRYZSBA9iNFZFhlIED2I0VkWGUgQPYjRWRYZSBA9iNFZFhlIED2I0VkWGUgQPYjRWRYZSBA9iNFZFhlIED2I0VkWGUgQPYjRWRYZSBA9iNFZFhlIED2I0VkWGUgQPYjRWRYZSBA9iNFZFhlIED2I0VkWGUgQPYjRWRYZSBA9iNFZFhlIED2I0VkWGUgQPYjRWRYZSBA9iNFZFhlIED2I0VkWGUgQPYjRWRYZSBA9iNFZFhlIED2I0VkWGUgQPYjRWRYZSBA9iNFZFhlIED2I0VkWGUgQPYjRWRYZSBA9iNFZFhlIED2I0VkWGUgQPYjRWRYZSBA9iNFZFhlIED2I0VkWGUgQPYjRWRYZSBA9iNFZFhlIED2I0VkWGUgQPYjRWRYZSBA9iNFZFhlIED2I0VkWGUgQPYjRWRYZSBA9iNFZFhlIED2I0VkWGUgQPYjRWRYZSBA9iNFZFhlIED2I0VkWGUgQPYjRWRYZSBA9iNFZFhlIED2I0VkWGUgQPYjRWRYZSBA9iNFZFhlIED2I0VkWGUgQPYjRWRYZSBA9iNFZFhlIED2I0VkWGUgQPYjRWRYZSBA9iNFZFhlIED2I0VkWGUgQPYjRWRYZSBA9iNFZFhlIED2I0VkWGUgQPYjRWRYZSBA9iNFZFhlIED2I0VkWGUgQPYjRWRYZSBA9iNFZFhlIED2I0VkWGUgQPYjRWRYZSBA9iNFZFhlIED2I0VkWGUgQPYjRWRYZSBA9iNFZFhlIED2I0VkWGUgQPYjRWRYZSBA9iNFZFhlIED2I0VkWGUgQPYjRWRYZSBA9iNFZFhlIED2I0VkWGUgQPYjRWRYZSBA9iNFZFhlIED2I0VkWGUgQPYjRWRYZSBA9iNFZFhlIED2I0VkWGUgQPYjRWRYZSBA9iNFZFhlIED2I0VkWGUgQPYjRWRYZSBA9iNFZFhlIED2I0VkWGUgQA2OklfnSCBADY6SV+dIIEANjpJX50ggQA2OklfnSCBADY6SV+dIIEANjpJX50ggQA2OklfnSCBADY6SV+dIIEBzY3rCEk8hQHNjesISTyFAc2N6whJPIUB31m670HwhQHfWbrvQfCFAd9Zuu9B8IUB31m670HwhQHfWbrvQfCFAd9Zuu9B8IUB31m670HwhQHfWbrvQfCFAd9Zuu9B8IUB31m670HwhQHfWbrvQfCFAd9Zuu9B8IUB31m670HwhQHfWbrvQfCFAd9Zuu9B8IUB31m670HwhQFGlZg+00iFAUaVmD7TSIUBRpWYPtNIhQFGlZg+00iFAUaVmD7TSIUBRpWYPtNIhQFGlZg+00iFAUaVmD7TSIUBRpWYPtNIhQFGlZg+00iFAUaVmD7TSIUBRpWYPtNIhQFGlZg+00iFAUaVmD7TSIUBRpWYPtNIhQFGlZg+00iFAUaVmD7TSIUBRpWYPtNIhQFIKur2k0SNA6Ugu/yF9JEDpSC7/IX0kQIqO5PIfkiVAio7k8h+SJUC8BRIUP4YmQLwFEhQ/hiZAvAUSFD+GJkC8BRIUP4YmQLUV+8vuCShAtRX7y+4JKEC1N/jCZIoqQEHxY8xdqypA2ht8YTIVLECsHFpkO78sQKwcWmQ7vyxArBxaZDu/LECsHFpkO78sQJHtfD81/ipAke18PzX+KkC1FfvL7mksQLUV+8vuaSxAtRX7y+5pLEC1FfvL7mksQLUV+8vuaSxAmbuWkA/6K0CZu5aQD/orQJm7lpAP+itAmbuWkA/6K0CZu5aQD/orQJm7lpAP+itAmbuWkA/6K0CZu5aQD/orQKK0N/jCpCtAorQ3+MKkK0CitDf4wqQrQKK0N/jCpCtAqmBUUidALECqYFRSJ0AsQKpgVFInQCxAqmBUUidALECqYFRSJ0AsQMUgsHJo0S1Axyk6ksv/K0DHKTqSy/8rQMcpOpLL/ytAzqrP1VbMKkDOqs/VVswqQEymCkYl9StATKYKRiX1K0BMpgpGJfUrQMdLN4lB4C1Ax0s3iUHgLUDXEvJBz8YvQLpJDAIrpy5AcT0K16MQLkCOBvAWSDAwQDeJQWDlECxAN4lBYOUQLEA3iUFg5RAsQD7o2az6vCxAi2zn+6kxL0CLbOf7qTEvQIts5/upMS9Ai2zn+6kxL0AYldQJaGItQNV46SYxSC9A1XjpJjFIL0Ac6+I2GsAvQBzr4jYawC9ACYofY+6aMEAJih9j7powQAmKH2PumjBAfoy5awmJMEB+jLlrCYkwQH6MuWsJiTBAHOviNhrQMECIY13cRlMwQBB6Nqs+lzBAEHo2qz6XMEAQejarPpcwQBB6Nqs+lzBAEHo2qz6XMEAQejarPpcwQO84RUdyyTBA7zhFR3LJMED0/dR46VYzQFg5tMh2/jFAWDm0yHb+MUBXW7G/7A4zQFdbsb/sDjNAV1uxv+wOM0BXW7G/7A4zQJOpglFJHTNAhjjWxW1EMkCGONbFbUQyQH0/NV66eTJAfT81Xrp5MkB9PzVeunkyQH0/NV66eTJAvjCZKhjFMEDD0ytlGRIxQET67evAKTJA4umVsgzBMkASg8DKobUzQBKDwMqhtTNA/kP67euAM0D+Q/rt64AzQP5D+u3rgDNASS7/If32MUAJG55eKesxQAkbnl4p6zFACRueXinrMUAOT6+UZagxQBlz1xLyoTJAeekmMQhsMkB56SYxCGwyQDeJQWDlsDJAF7fRAN5SM0AXt9EA3lIzQPkx5q4l9DJALpCg+DEmLkDByqFFtvMuQMHKoUW28y5APQrXo3CdLkA9CtejcJ0uQD0K16NwnS5APQrXo3CdLkBGtvP91JgvQJjdk4eF+i9AmN2Th4X6L0CY3ZOHhfovQJjdk4eF+i9AmN2Th4X6L0CY3ZOHhfovQDj4wmSqoC9AEFg5tMj2LkAQWDm0yPYuQBBYObTI9i5AEFg5tMj2LkAQWDm0yPYuQK8l5IOeTS9AryXkg55NL0DFjzF3LcEwQMWPMXctwTBAxY8xdy3BMEBtxf6ye4IwQPd14JwRNTFA93XgnBE1MUD3deCcETUxQBTQRNjwVDBAFNBE2PBUMECsrdhfdn8xQKyt2F92fzFArK3YX3Z/MUCsrdhfdn8xQEOtad5x2jFAQ61p3nHaMUBDrWnecdoxQFK4HoXroTNAFNBE2PB0NEAU0ETY8HQ0QPJBz2bVRzRATfOOU3S0MkBd3EYDeAstQF3cRgN4Cy1AryXkg57tLEDnHafoSM4tQOcdp+hIzi1A5x2n6EjOLUDnHafoSM4tQMsQx7q4DTBAyxDHurgNMEDHSzeJQYAtQMdLN4lBgC1Ax0s3iUGALUDHSzeJQYAtQMdLN4lBgC1Ax0s3iUGALUDHSzeJQYAtQOf7qfHSjS1A5/up8dKNLUDn+6nx0o0tQC0hH/RsNi1ALSEf9Gw2LUAtIR/0bDYtQC0hH/RsNi1AFmpN844TLUC5/If029ctQLn8h/Tb1y1AufyH9NvXLUC5/If029ctQLn8h/Tb1y1AufyH9NvXLUDpSC7/If0uQOlILv8h/S5AVTAqqROQLUBVMCqpE5AtQFUwKqkTkC1AVTAqqROQLUDswDkjSjstQOzAOSNKOy1A7MA5I0o7LUBbQj7o2YwuQFtCPujZjC5A4umVsgwRL0Di6ZWyDBEvQOLplbIMES9AkKD4MeYOMECQoPgx5g4wQDGZKhiVlDBA+aBns+pDMUD5oGez6kMxQPmgZ7PqQzFA+aBns+pDMUD5oGez6kMxQPmgZ7PqQzFA+aBns+pDMUD5oGez6kMxQPmgZ7PqQzFAhJ7Nqs+VMEAbDeAtkKAwQJAxdy0hfzBA7MA5I0r7MEDswDkjSvswQOzAOSNK+zBAm1Wfq60IMUB7FK5H4boxQEATYcPTOzFAZMxdS8inMUBkzF1LyKcxQERpb/CFSTJARGlv8IVJMkDxY8xdS4gyQEYldQKaKDFARiV1ApooMUBGJXUCmigxQEYldQKaKDFARiV1ApooMUC+MJkqGGUyQDGZKhiVBDNATRWMSuokM0BNFYxK6iQzQE0VjErqJDNAWMoyxLEuMkBYyjLEsS4yQH2utmJ/KTNAfa62Yn8pM0B9rrZifykzQNjw9EpZhjNA2PD0SlmGM0DJdr6fGu8zQNobfGEyZTNAodY07zj1M0Ch1jTvOPUzQDMzMzMzgzVAQYLix5i7NEBtxf6ye8I0QG3F/rJ7cjVAbAn5oGdzNkAGEhQ/xjw3QAYSFD/GPDdApN++DpzDNkCk374OnMM2QOJYF7fR8DNA4lgXt9HwM0DiWBe30fAzQOJYF7fR8DNAPnlYqDXtM0B88rBQaxo0QHzysFBrGjRABoGVQ4ssM0AGgZVDiywzQAaBlUOLLDNABoGVQ4ssM0AGgZVDiywzQK7YX3ZPnjRAJuSDns06NEAm5IOezTo0QCbkg57NOjRAJuSDns06NEBEaW/whRkzQERpb/CFGTNARGlv8IUZM0BEaW/whRkzQP7UeOkmITNAXdxGA3grM0DjpZvEIOAyQOSDns2qbzFADJOpglFpMUAMk6mCUWkxQEOtad5xGjJAXynLEMcaMkBEaW/whWkxQERpb/CFaTFAqMZLN4kBMUCoxks3iQExQLsnDwu1NjFAseHplbJ8MUCx4emVsnwxQLu4jQbwZjBAeJyiI7k8MEAW+8vuyYMwQBb7y+7JgzBAFvvL7smDMECGyVTBqDQxQIbJVMGoNDFAhslUwag0MUCGyVTBqDQxQCsYldQJODJAKxiV1Ak4MkDoaiv2l00yQLKd76fGqzJAF9nO91OzMUAX2c73U7MxQEtZhjjWFTFAS1mGONYVMUAhsHJokW0xQFmGONbFnTBAWYY41sWdMEAJ+aBnsxoxQKqCUUmdUDFA+THmriXkMED5MeauJeQwQE+vlGWIUzFA4XoUrkexMEDhehSuR7EwQPW52or9ZTBAEqW9wRfmMUBq3nGKjjQyQGrecYqONDJAat5xio40MkBq3nGKjjQyQD2bVZ+rfTFAPZtVn6t9MUAXt9EA3vIwQBe30QDe8jBAF7fRAN7yMEAXt9EA3vIwQBe30QDe8jBAjSjtDb6QMECNKO0NvpAwQCJseHqlDDJAW0I+6NkcMEBbQj7o2RwwQE9AE2HDEzBAnDOitDd4LkCcM6K0N3guQJwzorQ3eC5AMCqpE9AkLkB2cRsN4I0uQHZxGw3gjS5AdnEbDeCNLkAXSFD8GHMvQBdIUPwYcy9AH4XrUbj+MEAfhetRuP4wQB+F61G4/jBAH4XrUbj+MEAs1JrmHRcxQCzUmuYdFzFALNSa5h0XMUAs1JrmHRcxQCfChqdXmjBAJ8KGp1eaMEAnwoanV5owQGb35GGhti9AZvfkYaG2L0DdtYR80DMwQN21hHzQMzBAI9v5fmocL0DsL7snD+svQB+F61G4njFAH4XrUbieMUAfhetRuJ4xQB+F61G4njFAH4XrUbieMUAfhetRuJ4xQB+F61G4njFAH4XrUbieMUAfhetRuJ4xQB+F61G4njFAWvW52oq9MUBa9bnair0xQFr1udqKvTFAWvW52oq9MUBuowG8BaIxQAMJih9jHjJAAwmKH2MeMkADCYofYx4yQCh+jLlr6TFADwu1pnm3MkBN845TdNQzQPAWSFD8aDBA8BZIUPxoMEAofoy5awkvQCh+jLlrCS9AUI2XbhJjLEBQjZduEmMsQFCNl24SYyxA/7J78rDQMECqYFRSJ4AxQNuK/WX3FDNA24r9ZfcUM0Dbiv1l9xQzQNuK/WX3FDNAPnlYqDWtM0A+eVioNa0zQD55WKg1rTNAXCBB8WPMM0BcIEHxY8wzQAwCK4cWiTNADAIrhxaJM0Ai/fZ14BwyQCL99nXgHDJAIv32deAcMkAi/fZ14BwyQCDSb18H3jNAkQ96NqsOM0COdXEbDVAyQI51cRsNUDJAnMQgsHIoMECcxCCwcigwQJzEILByKDBAgSbChqeHMECBJsKGp4cwQIEmwoanhzBA78nDQq0pL0DvycNCrSkvQO/Jw0KtKS9A78nDQq0pL0DvycNCrSkvQAXFjzF3zS1AwcqhRbYzLUDByqFFtjMtQKqCUUmdAC9AqoJRSZ0AL0CqglFJnQAvQPMf0m9fRzBAIGPuWkKuMEBkO99PjScxQESLbOf72TBAmEwVjEq6MECTqYJRSZ0wQJOpglFJnTBAk6mCUUmdMECTqYJRSZ0wQJOpglFJnTBAk6mCUUmdMEAyVTAqqUMwQO7rwDkj6i9AN4lBYOWgMEA3iUFg5aAwQDeJQWDloDBAp+hILv/hMUAxmSoYldQwQOAtkKD4US9A4C2QoPhRL0DgLZCg+FEvQOAtkKD4US9A4C2QoPhRL0DgLZCg+FEvQCJseHqlPDBAhlrTvOMUL0CGWtO84xQvQIZa07zjFC9A2IFzRpRWLkAQWDm0yHYtQIlBYOXQwi1AiUFg5dDCLUBNFYxK6gQvQPH0SlmGmC1ADJOpglFJLEAMk6mCUUksQAyTqYJRSSxADJOpglFJLEAaUdobfKEsQBpR2ht8oSxAGlHaG3yhLEBTliGOdfEtQFOWIY518S1AU5YhjnXxLUB0tRX7y14wQHS1FfvLXjBAdLUV+8teMEB0tRX7y14wQHS1FfvLXjBA4L4OnDMCMUDl8h/Sbz8wQOXyH9JvPzBAj1N0JJdvMECPU3Qkl28wQI9TdCSXbzBAzhlR2htsMEBiEFg5tNgwQGIQWDm02DBAYhBYObTYMEBiEFg5tNgwQGIQWDm02DBAw9MrZRnSMUCM22gAbwEvQIzbaABvAS9AjNtoAG8BL0CM22gAbwEvQDAqqRPQZC9AMCqpE9BkL0AwKqkT0GQvQDAqqRPQZC9AMCqpE9BkL0AwKqkT0GQvQDAqqRPQZC9AMCqpE9BkL0Bcj8L1KLwvQFD8GHPXci9AV+wvuyefMEBX7C+7J58wQFfsL7snnzBAV+wvuyefMEBX7C+7J58wQH/7OnDOWDBAf/s6cM5YMEB/+zpwzlgwQE7RkVz+AzBAzczMzMxsMECjAbwFEkQzQKTfvg6cAzRApN++DpwDNECk374OnAM0QKTfvg6cAzRApN++DpwDNECk374OnAM0QIqO5PIfUjJAio7k8h9SMkDUmuYdp2gyQGEyVTAqeTJAlWWIY12cNECsrdhfdj8zQOcdp+hIPjRAC0YldQJaMkDvOEVHcukyQKmkTkATYTJAqaROQBNhMkCI9NvXgWMxQIj029eBYzFAr5RliGPNMUDBOSNKexMwQME5I0p7EzBAwTkjSnsTMEC/DpwzohQvQLgehetRiDBAuB6F61GIMEC4HoXrUYgwQPfkYaHW9DBA9+Rhodb0MEC4HoXrUYgxQLgehetRiDFAeHqlLENcMkB4eqUsQ1wyQFHaG3xh0jBAkxgEVg6tLkCTGARWDq0uQMoyxLEuLi9AkxgEVg6tLkClTkATYSMwQPW52or9xS5AkKD4MeYuL0AmUwWjklouQCZTBaOSWi5AJlMFo5JaLkAbDeAtkIAvQBsN4C2QgC9AGw3gLZCAL0AbDeAtkIAvQBsN4C2QgC9AGw3gLZCAL0CUh4Va07wuQJSHhVrTvC5AlIeFWtO8LkBRa5p3nGIvQFFrmnecYi9Adk8eFmrNL0CRfvs6cE4vQDj4wmSqoC9A63O1FfvrLkDrc7UV++suQCzUmuYdpy9AAwmKH2OuMEADCYofY64wQEGC4seYey9AQYLix5h7L0BBguLHmHsvQC/dJAaBtS9AL90kBoG1L0Av3SQGgbUvQPCnxks3GTBA8KfGSzcZMEDwp8ZLNxkwQPCnxks3GTBAmG4Sg8DKL0BAE2HD08suQPvL7snDoi5A+8vuycOiLkD7y+7Jw6IuQLbz/dR4qS5AtvP91HipLkC28/3UeKkuQATnjCjtLS5ABOeMKO0tLkDysFBrmncwQGpN845T1DBAak3zjlPUMECF61G4HmUwQIXrUbgeZTBAhetRuB5lMEARNjy9UlYwQBE2PL1SVjBAETY8vVJWMEDY8PRKWSYwQPfkYaHWJDBA9+RhodYkMEDhehSuR2EwQOF6FK5HYTBA4XoUrkdhMEDhehSuR2EwQOF6FK5HYTBA4XoUrkdhMEDIBz2bVR8vQMgHPZtVHy9A8kHPZtVnLkD4wmSqYJQsQPjCZKpglCxAmnecoiM5K0CfzarP1TYsQE9AE2HDUy5AZ0Rpb/ClLEBnRGlv8KUsQBTQRNjwdC1AFNBE2PB0LUAU0ETY8HQtQMWPMXctAS1AxY8xdy0BLUBcj8L1KJwsQPJBz2bVhyxA2/l+arxUK0Db+X5qvFQrQNv5fmq8VCtAcT0K16MQLUBxPQrXoxAtQHE9CtejEC1AwoanV8pyLUAcfGEyVdAtQBx8YTJV0C1AHHxhMlXQLUAcfGEyVdAtQHuDL0ymKi9Ae4MvTKYqL0C30QDeAukvQOXQItv5vi9Aih9j7lpCL0CKH2PuWkIvQIofY+5aQi9ATx4Wak1zLkBPHhZqTXMuQBkEVg4t0i9AGQRWDi3SL0AZBFYOLdIvQK5H4XoUrjBAz2bV52qrMUDPZtXnaqsxQHS1FfvLTjJAdLUV+8tOMkB0tRX7y04yQKyL22gAfzJAEhQ/xtx1MkA=\",\"dtype\":\"float64\",\"shape\":[1000]}},\"selected\":{\"id\":\"1240\",\"type\":\"Selection\"},\"selection_policy\":{\"id\":\"1239\",\"type\":\"UnionRenderers\"}},\"id\":\"1196\",\"type\":\"ColumnDataSource\"},{\"attributes\":{},\"id\":\"1243\",\"type\":\"UnionRenderers\"},{\"attributes\":{\"callback\":null,\"data\":{\"x\":[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,295,296,297,298,299,300,301,302,303,304,305,306,307,308,309,310,311,312,313,314,315,316,317,318,319,320,321,322,323,324,325,326,327,328,329,330,331,332,333,334,335,336,337,338,339,340,341,342,343,344,345,346,347,348,349,350,351,352,353,354,355,356,357,358,359,360,361,362,363,364,365,366,367,368,369,370,371,372,373,374,375,376,377,378,379,380,381,382,383,384,385,386,387,388,389,390,391,392,393,394,395,396,397,398,399,400,401,402,403,404,405,406,407,408,409,410,411,412,413,414,415,416,417,418,419,420,421,422,423,424,425,426,427,428,429,430,431,432,433,434,435,436,437,438,439,440,441,442,443,444,445,446,447,448,449,450,451,452,453,454,455,456,457,458,459,460,461,462,463,464,465,466,467,468,469,470,471,472,473,474,475,476,477,478,479,480,481,482,483,484,485,486,487,488,489,490,491,492,493,494,495,496,497,498,499,500,501,502,503,504,505,506,507,508,509,510,511,512,513,514,515,516,517,518,519,520,521,522,523,524,525,526,527,528,529,530,531,532,533,534,535,536,537,538,539,540,541,542,543,544,545,546,547,548,549,550,551,552,553,554,555,556,557,558,559,560,561,562,563,564,565,566,567,568,569,570,571,572,573,574,575,576,577,578,579,580,581,582,583,584,585,586,587,588,589,590,591,592,593,594,595,596,597,598,599,600,601,602,603,604,605,606,607,608,609,610,611,612,613,614,615,616,617,618,619,620,621,622,623,624,625,626,627,628,629,630,631,632,633,634,635,636,637,638,639,640,641,642,643,644,645,646,647,648,649,650,651,652,653,654,655,656,657,658,659,660,661,662,663,664,665,666,667,668,669,670,671,672,673,674,675,676,677,678,679,680,681,682,683,684,685,686,687,688,689,690,691,692,693,694,695,696,697,698,699,700,701,702,703,704,705,706,707,708,709,710,711,712,713,714,715,716,717,718,719,720,721,722,723,724,725,726,727,728,729,730,731,732,733,734,735,736,737,738,739,740,741,742,743,744,745,746,747,748,749,750,751,752,753,754,755,756,757,758,759,760,761,762,763,764,765,766,767,768,769,770,771,772,773,774,775,776,777,778,779,780,781,782,783,784,785,786,787,788,789,790,791,792,793,794,795,796,797,798,799,800,801,802,803,804,805,806,807,808,809,810,811,812,813,814,815,816,817,818,819,820,821,822,823,824,825,826,827,828,829,830,831,832,833,834,835,836,837,838,839,840,841,842,843,844,845,846,847,848,849,850,851,852,853,854,855,856,857,858,859,860,861,862,863,864,865,866,867,868,869,870,871,872,873,874,875,876,877,878,879,880,881,882,883,884,885,886,887,888,889,890,891,892,893,894,895,896,897,898,899,900,901,902,903,904,905,906,907,908,909,910,911,912,913,914,915,916,917,918,919,920,921,922,923,924,925,926,927,928,929,930,931,932,933,934,935,936,937,938,939,940,941,942,943,944,945,946,947,948,949,950,951,952,953,954,955,956,957,958,959,960,961,962,963,964,965,966,967,968,969,970,971,972,973,974,975,976,977,978,979,980,981,982,983,984,985,986,987,988,989,990,991,992,993,994,995,996,997,998,999],\"y\":{\"__ndarray__\":\"nfS+8bVn9z+d9L7xtWf3P530vvG1Z/c/nfS+8bVn9z+d9L7xtWf3P530vvG1Z/c/nfS+8bVn9z+d9L7xtWf3Pxv1EI3uoPc/G/UQje6g9z8b9RCN7qD3Pxv1EI3uoPc/G/UQje6g9z8b9RCN7qD3Pxv1EI3uoPc/G/UQje6g9z8b9RCN7qD3Pxv1EI3uoPc/G/UQje6g9z8b9RCN7qD3Pxv1EI3uoPc/G/UQje6g9z8b9RCN7qD3Pxv1EI3uoPc/G/UQje6g9z8b9RCN7qD3Pxv1EI3uoPc/G/UQje6g9z8b9RCN7qD3Pxv1EI3uoPc/G/UQje6g9z8b9RCN7qD3Pxv1EI3uoPc/G/UQje6g9z8b9RCN7qD3Pxv1EI3uoPc/G/UQje6g9z8b9RCN7qD3Pxv1EI3uoPc/G/UQje6g9z8b9RCN7qD3Pxv1EI3uoPc/G/UQje6g9z8b9RCN7qD3Pxv1EI3uoPc/G/UQje6g9z8b9RCN7qD3Pxv1EI3uoPc/G/UQje6g9z8b9RCN7qD3Pxv1EI3uoPc/G/UQje6g9z8b9RCN7qD3Pxv1EI3uoPc/G/UQje6g9z8b9RCN7qD3Pxv1EI3uoPc/G/UQje6g9z8b9RCN7qD3Pxv1EI3uoPc/G/UQje6g9z8b9RCN7qD3Pxv1EI3uoPc/G/UQje6g9z8b9RCN7qD3Pxv1EI3uoPc/G/UQje6g9z8b9RCN7qD3Pxv1EI3uoPc/G/UQje6g9z8b9RCN7qD3Pxv1EI3uoPc/G/UQje6g9z8b9RCN7qD3Pxv1EI3uoPc/G/UQje6g9z8b9RCN7qD3Pxv1EI3uoPc/G/UQje6g9z8b9RCN7qD3Pxv1EI3uoPc/G/UQje6g9z8b9RCN7qD3Pxv1EI3uoPc/G/UQje6g9z8b9RCN7qD3Pxv1EI3uoPc/G/UQje6g9z8b9RCN7qD3Pxv1EI3uoPc/G/UQje6g9z8b9RCN7qD3Pxv1EI3uoPc/G/UQje6g9z8b9RCN7qD3Pxv1EI3uoPc/G/UQje6g9z8b9RCN7qD3Pxv1EI3uoPc/G/UQje6g9z8b9RCN7qD3Pxv1EI3uoPc/G/UQje6g9z8b9RCN7qD3Pxv1EI3uoPc/G/UQje6g9z8b9RCN7qD3Pxv1EI3uoPc/G/UQje6g9z8b9RCN7qD3Pxv1EI3uoPc/G/UQje6g9z8b9RCN7qD3Pxv1EI3uoPc/G/UQje6g9z8b9RCN7qD3Pxv1EI3uoPc/G/UQje6g9z8b9RCN7qD3Pxv1EI3uoPc/G/UQje6g9z8b9RCN7qD3Pxv1EI3uoPc/G/UQje6g9z8b9RCN7qD3Pxv1EI3uoPc/G/UQje6g9z8b9RCN7qD3Pxv1EI3uoPc/G/UQje6g9z8b9RCN7qD3Pxv1EI3uoPc/G/UQje6g9z8b9RCN7qD3Pxv1EI3uoPc/G/UQje6g9z8b9RCN7qD3Pxv1EI3uoPc/G/UQje6g9z8b9RCN7qD3Pxv1EI3uoPc/G/UQje6g9z8b9RCN7qD3Pxv1EI3uoPc/G/UQje6g9z8b9RCN7qD3Pxv1EI3uoPc/G/UQje6g9z8b9RCN7qD3Pxv1EI3uoPc/G/UQje6g9z8b9RCN7qD3Pxv1EI3uoPc/G/UQje6g9z8b9RCN7qD3Pxv1EI3uoPc/G/UQje6g9z8b9RCN7qD3Pxv1EI3uoPc/G/UQje6g9z8b9RCN7qD3Pxv1EI3uoPc/G/UQje6g9z8b9RCN7qD3Pxv1EI3uoPc/G/UQje6g9z8b9RCN7qD3Pxv1EI3uoPc/G/UQje6g9z8b9RCN7qD3Pxv1EI3uoPc/G/UQje6g9z8b9RCN7qD3Pxv1EI3uoPc/G/UQje6g9z8b9RCN7qD3Pxv1EI3uoPc/G/UQje6g9z8b9RCN7qD3Pxv1EI3uoPc/G/UQje6g9z8b9RCN7qD3Pxv1EI3uoPc/G/UQje6g9z8b9RCN7qD3Pxv1EI3uoPc/G/UQje6g9z8b9RCN7qD3Pxv1EI3uoPc/G/UQje6g9z8b9RCN7qD3Pxv1EI3uoPc/G/UQje6g9z8b9RCN7qD3Pxv1EI3uoPc/G/UQje6g9z8b9RCN7qD3Pxv1EI3uoPc/G/UQje6g9z8b9RCN7qD3Pxv1EI3uoPc/G/UQje6g9z8b9RCN7qD3Pxv1EI3uoPc/G/UQje6g9z8b9RCN7qD3Pxv1EI3uoPc/G/UQje6g9z8b9RCN7qD3Pxv1EI3uoPc/G/UQje6g9z/i5H6HogAAQOLkfoeiAABA4uR+h6IAAEDi5H6HogAAQOLkfoeiAABA4uR+h6IAAEDi5H6HogAAQOLkfoeiAABA4uR+h6IAAEDi5H6HogAAQOLkfoeiAABA4uR+h6IAAEDi5H6HogAAQOLkfoeiAABA4uR+h6IAAEDi5H6HogAAQOLkfoeiAABA4uR+h6IAAEDi5H6HogAAQOLkfoeiAABA4uR+h6IAAEDi5H6HogAAQOLkfoeiAABA4uR+h6IAAEDi5H6HogAAQOLkfoeiAABA4uR+h6IAAEDi5H6HogAAQOLkfoeiAABA4uR+h6IAAEDi5H6HogAAQOLkfoeiAABA4uR+h6IAAEDi5H6HogAAQOLkfoeiAABA4uR+h6IAAEDi5H6HogAAQOLkfoeiAABA4uR+h6IAAEDi5H6HogAAQOLkfoeiAABA4uR+h6IAAEDi5H6HogAAQOLkfoeiAABA4uR+h6IAAEDi5H6HogAAQOLkfoeiAABA4uR+h6IAAEDi5H6HogAAQOLkfoeiAABA4uR+h6IAAEDi5H6HogAAQOLkfoeiAABA4uR+h6IAAEDi5H6HogAAQOLkfoeiAABA4uR+h6IAAEDi5H6HogAAQOLkfoeiAABA4uR+h6IAAEDi5H6HogAAQOLkfoeiAABA4uR+h6IAAEDi5H6HogAAQOLkfoeiAABA4uR+h6IAAEDi5H6HogAAQOLkfoeiAABA4uR+h6IAAEDi5H6HogAAQOLkfoeiAABA4uR+h6IAAEDi5H6HogAAQOLkfoeiAABA4uR+h6IAAEDi5H6HogAAQOLkfoeiAABA4uR+h6IAAEDi5H6HogAAQOLkfoeiAABA4uR+h6IAAEDi5H6HogAAQOLkfoeiAABA4uR+h6IAAEDi5H6HogAAQOLkfoeiAABA4uR+h6IAAEDi5H6HogAAQOLkfoeiAABA4uR+h6IAAEDi5H6HogAAQOLkfoeiAABA4uR+h6IAAEDi5H6HogAAQOLkfoeiAABA4uR+h6IAAEDi5H6HogAAQOLkfoeiAABA4uR+h6IAAEDi5H6HogAAQOLkfoeiAABA4uR+h6IAAEDi5H6HogAAQOLkfoeiAABA4uR+h6IAAEDi5H6HogAAQOLkfoeiAABA4uR+h6IAAEDi5H6HogAAQOLkfoeiAABA4uR+h6IAAEDi5H6HogAAQOLkfoeiAABA4uR+h6IAAEDi5H6HogAAQOLkfoeiAABA4uR+h6IAAEDi5H6HogAAQOLkfoeiAABA4uR+h6IAAEDi5H6HogAAQOLkfoeiAABA4uR+h6IAAEDi5H6HogAAQOLkfoeiAABA4uR+h6IAAEDi5H6HogAAQOLkfoeiAABA4uR+h6IAAEDi5H6HogAAQOLkfoeiAABA4uR+h6IAAEDi5H6HogAAQOLkfoeiAABA4uR+h6IAAEDi5H6HogAAQOLkfoeiAABA4uR+h6IAAEDi5H6HogAAQOLkfoeiAABA4uR+h6IAAEDi5H6HogAAQOLkfoeiAABA4uR+h6IAAEDi5H6HogAAQOLkfoeiAABA4uR+h6IAAEDi5H6HogAAQOLkfoeiAABA4uR+h6IAAEDi5H6HogAAQOLkfoeiAABA4uR+h6IAAEDi5H6HogAAQOLkfoeiAABA4uR+h6IAAEDi5H6HogAAQOLkfoeiAABA4uR+h6IAAEDi5H6HogAAQOLkfoeiAABA4uR+h6IAAEDi5H6HogAAQOLkfoeiAABA4uR+h6IAAEDi5H6HogAAQOLkfoeiAABA4uR+h6IAAEDi5H6HogAAQOLkfoeiAABA4uR+h6IAAEDi5H6HogAAQOLkfoeiAABA4uR+h6IAAEDi5H6HogAAQOLkfoeiAABA4uR+h6IAAEDi5H6HogAAQOLkfoeiAABA4uR+h6IAAEDi5H6HogAAQOLkfoeiAABA4uR+h6IAAEDi5H6HogAAQOLkfoeiAABA4uR+h6IAAEDi5H6HogAAQOLkfoeiAABA4uR+h6IAAEDi5H6HogAAQOLkfoeiAABA4uR+h6IAAEDi5H6HogAAQOLkfoeiAABA4uR+h6IAAEDi5H6HogAAQOLkfoeiAABA4uR+h6IAAEDi5H6HogAAQOLkfoeiAABA4uR+h6IAAEDi5H6HogAAQOLkfoeiAABA4uR+h6IAAEDi5H6HogAAQOLkfoeiAABA4uR+h6IAAEDi5H6HogAAQOLkfoeiAABA4uR+h6IAAEDi5H6HogAAQOLkfoeiAABA4uR+h6IAAEDi5H6HogAAQOLkfoeiAABA4uR+h6IAAEDi5H6HogAAQOLkfoeiAABA4uR+h6IAAEDi5H6HogAAQOLkfoeiAABA4uR+h6IAAEDi5H6HogAAQOLkfoeiAABA4uR+h6IAAEDi5H6HogAAQOLkfoeiAABA4uR+h6IAAEDi5H6HogAAQOLkfoeiAABA4uR+h6IAAEDi5H6HogAAQOLkfoeiAABA4uR+h6IAAEDi5H6HogAAQOLkfoeiAABA4uR+h6IAAEDi5H6HogAAQOLkfoeiAABA4uR+h6IAAEDi5H6HogAAQOLkfoeiAABA4uR+h6IAAEDi5H6HogAAQOLkfoeiAABA4uR+h6IAAEDi5H6HogAAQOLkfoeiAABA4uR+h6IAAEDi5H6HogAAQOLkfoeiAABA4uR+h6IAAEDi5H6HogAAQOLkfoeiAABA4uR+h6IAAEDi5H6HogAAQOLkfoeiAABA4uR+h6IAAEDi5H6HogAAQOLkfoeiAABA4uR+h6IAAEDi5H6HogAAQOLkfoeiAABA4uR+h6IAAEDi5H6HogAAQOLkfoeiAABA4uR+h6IAAEDi5H6HogAAQOLkfoeiAABA4uR+h6IAAEDi5H6HogAAQOLkfoeiAABA4uR+h6IAAEDi5H6HogAAQOLkfoeiAABA4uR+h6IAAEDi5H6HogAAQOLkfoeiAABA4uR+h6IAAEDi5H6HogAAQOLkfoeiAABA4uR+h6IAAEDi5H6HogAAQOLkfoeiAABA4uR+h6IAAEDi5H6HogAAQOLkfoeiAABA4uR+h6IAAEDi5H6HogAAQOLkfoeiAABA4uR+h6IAAEDi5H6HogAAQOLkfoeiAABA4uR+h6IAAEDi5H6HogAAQOLkfoeiAABA4uR+h6IAAEDi5H6HogAAQOLkfoeiAABA4uR+h6IAAEDi5H6HogAAQOLkfoeiAABA4uR+h6IAAEDi5H6HogAAQOLkfoeiAABA4uR+h6IAAEDi5H6HogAAQOLkfoeiAABA4uR+h6IAAEDi5H6HogAAQOLkfoeiAABA4uR+h6IAAEDi5H6HogAAQOLkfoeiAABA4uR+h6IAAEDi5H6HogAAQOLkfoeiAABA4uR+h6IAAEDi5H6HogAAQOLkfoeiAABA4uR+h6IAAEDi5H6HogAAQOLkfoeiAABA4uR+h6IAAEDi5H6HogAAQOLkfoeiAABA4uR+h6IAAEDi5H6HogAAQOLkfoeiAABA4uR+h6IAAEDi5H6HogAAQOLkfoeiAABA4uR+h6IAAEDi5H6HogAAQOLkfoeiAABA4uR+h6IAAEDi5H6HogAAQOLkfoeiAABA4uR+h6IAAEDi5H6HogAAQOLkfoeiAABA4uR+h6IAAEDi5H6HogAAQOLkfoeiAABA4uR+h6IAAEDi5H6HogAAQOLkfoeiAABA4uR+h6IAAEDi5H6HogAAQOLkfoeiAABA4uR+h6IAAEDi5H6HogAAQOLkfoeiAABA4uR+h6IAAEDi5H6HogAAQOLkfoeiAABA4uR+h6IAAEDi5H6HogAAQOLkfoeiAABA4uR+h6IAAEDi5H6HogAAQOLkfoeiAABA4uR+h6IAAEDi5H6HogAAQOLkfoeiAABA4uR+h6IAAEDi5H6HogAAQOLkfoeiAABA4uR+h6IAAEDi5H6HogAAQOLkfoeiAABA4uR+h6IAAEDi5H6HogAAQOLkfoeiAABA4uR+h6IAAEDi5H6HogAAQOLkfoeiAABA4uR+h6IAAEDi5H6HogAAQOLkfoeiAABA4uR+h6IAAEDi5H6HogAAQOLkfoeiAABA4uR+h6IAAEDi5H6HogAAQOLkfoeiAABA4uR+h6IAAEDi5H6HogAAQOLkfoeiAABA4uR+h6IAAEDi5H6HogAAQOLkfoeiAABA4uR+h6IAAEDi5H6HogAAQOLkfoeiAABA4uR+h6IAAEDi5H6HogAAQOLkfoeiAABA4uR+h6IAAEDi5H6HogAAQOLkfoeiAABA4uR+h6IAAEDi5H6HogAAQOLkfoeiAABA4uR+h6IAAEDi5H6HogAAQOLkfoeiAABAM8SxLm5jAEAzxLEubmMAQDPEsS5uYwBAM8SxLm5jAEAzxLEubmMAQDPEsS5uYwBAM8SxLm5jAEAzxLEubmMAQDPEsS5uYwBAM8SxLm5jAEAzxLEubmMAQDPEsS5uYwBAM8SxLm5jAEAzxLEubmMAQDPEsS5uYwBAM8SxLm5jAEAzxLEubmMAQDPEsS5uYwBAM8SxLm5jAEAzxLEubmMAQDPEsS5uYwBAM8SxLm5jAEAzxLEubmMAQDPEsS5uYwBAM8SxLm5jAEAzxLEubmMAQDPEsS5uYwBAM8SxLm5jAEAzxLEubmMAQDPEsS5uYwBAM8SxLm5jAEAzxLEubmMAQDPEsS5uYwBAM8SxLm5jAEAzxLEubmMAQDPEsS5uYwBAM8SxLm5jAEAzxLEubmMAQDPEsS5uYwBAM8SxLm5jAEAzxLEubmMAQDPEsS5uYwBAM8SxLm5jAEAzxLEubmMAQDPEsS5uYwBAM8SxLm5jAEAzxLEubmMAQDPEsS5uYwBAM8SxLm5jAEAzxLEubmMAQDPEsS5uYwBAM8SxLm5jAEAzxLEubmMAQDPEsS5uYwBAM8SxLm5jAEAzxLEubmMAQDPEsS5uYwBAM8SxLm5jAEAzxLEubmMAQDPEsS5uYwBAM8SxLm5jAEAzxLEubmMAQDPEsS5uYwBAM8SxLm5jAEAzxLEubmMAQDPEsS5uYwBAM8SxLm5jAEAzxLEubmMAQDPEsS5uYwBAM8SxLm5jAEAzxLEubmMAQDPEsS5uYwBAM8SxLm5jAEAzxLEubmMAQDPEsS5uYwBAM8SxLm5jAEAzxLEubmMAQDPEsS5uYwBAM8SxLm5jAEAzxLEubmMAQDPEsS5uYwBAM8SxLm5jAEAzxLEubmMAQDPEsS5uYwBAM8SxLm5jAEAzxLEubmMAQDPEsS5uYwBAM8SxLm5jAEAzxLEubmMAQDPEsS5uYwBAM8SxLm5jAEAzxLEubmMAQDPEsS5uYwBAM8SxLm5jAEAzxLEubmMAQDPEsS5uYwBAM8SxLm5jAEAzxLEubmMAQDPEsS5uYwBAM8SxLm5jAEAzxLEubmMAQDPEsS5uYwBAM8SxLm5jAEAzxLEubmMAQDPEsS5uYwBAM8SxLm5jAEAzxLEubmMAQDPEsS5uYwBAM8SxLm5jAEAzxLEubmMAQDPEsS5uYwBAM8SxLm5jAEAzxLEubmMAQDPEsS5uYwBAM8SxLm5jAEAzxLEubmMAQDPEsS5uYwBAM8SxLm5jAEAzxLEubmMAQDPEsS5uYwBAM8SxLm5jAEAzxLEubmMAQDPEsS5uYwBAM8SxLm5jAEAzxLEubmMAQDPEsS5uYwBAM8SxLm5jAEAzxLEubmMAQDPEsS5uYwBAM8SxLm5jAEAzxLEubmMAQDPEsS5uYwBAM8SxLm5jAEAzxLEubmMAQDPEsS5uYwBAM8SxLm5jAEAzxLEubmMAQDPEsS5uYwBAM8SxLm5jAEAzxLEubmMAQDPEsS5uYwBAM8SxLm5jAEAzxLEubmMAQDPEsS5uYwBAM8SxLm5jAEAzxLEubmMAQDPEsS5uYwBAM8SxLm5jAEAzxLEubmMAQDPEsS5uYwBAM8SxLm5jAEAzxLEubmMAQDPEsS5uYwBAM8SxLm5jAEAzxLEubmMAQDPEsS5uYwBAM8SxLm5jAEAzxLEubmMAQDPEsS5uYwBAM8SxLm5jAEAzxLEubmMAQDPEsS5uYwBAM8SxLm5jAEAzxLEubmMAQDPEsS5uYwBAM8SxLm5jAEAzxLEubmMAQDPEsS5uYwBAM8SxLm5jAEAzxLEubmMAQDPEsS5uYwBAM8SxLm5jAEAzxLEubmMAQDPEsS5uYwBAM8SxLm5jAEAzxLEubmMAQDPEsS5uYwBAM8SxLm5jAEAzxLEubmMAQDPEsS5uYwBAM8SxLm5jAEAzxLEubmMAQDPEsS5uYwBAM8SxLm5jAEAzxLEubmMAQDPEsS5uYwBAM8SxLm5jAEAzxLEubmMAQDPEsS5uYwBAM8SxLm5jAEAzxLEubmMAQDPEsS5uYwBAM8SxLm5jAEAzxLEubmMAQDPEsS5uYwBAM8SxLm5jAEAzxLEubmMAQDPEsS5uYwBAM8SxLm5jAEAzxLEubmMAQDPEsS5uYwBAM8SxLm5jAEAzxLEubmMAQDPEsS5uYwBAM8SxLm5jAEAzxLEubmMAQDPEsS5uYwBAM8SxLm5jAEAzxLEubmMAQDPEsS5uYwBAM8SxLm5jAEAzxLEubmMAQDPEsS5uYwBAM8SxLm5jAEAzxLEubmMAQDPEsS5uYwBAM8SxLm5jAEAzxLEubmMAQDPEsS5uYwBAM8SxLm5jAEAzxLEubmMAQDPEsS5uYwBAM8SxLm5jAEAzxLEubmMAQDPEsS5uYwBAM8SxLm5jAEAzxLEubmMAQDPEsS5uYwBAM8SxLm5jAEAzxLEubmMAQDPEsS5uYwBAM8SxLm5jAEAzxLEubmMAQDPEsS5uYwBAM8SxLm5jAEAzxLEubmMAQDPEsS5uYwBAM8SxLm5jAEAzxLEubmMAQDPEsS5uYwBAM8SxLm5jAEAzxLEubmMAQDPEsS5uYwBAM8SxLm5jAEAzxLEubmMAQDPEsS5uYwBAM8SxLm5jAEAzxLEubmMAQDPEsS5uYwBAM8SxLm5jAEAzxLEubmMAQDPEsS5uYwBAM8SxLm5jAEAzxLEubmMAQDPEsS5uYwBAM8SxLm5jAEAzxLEubmMAQDPEsS5uYwBAM8SxLm5jAEAzxLEubmMAQDPEsS5uYwBAM8SxLm5jAEAzxLEubmMAQDPEsS5uYwBAM8SxLm5jAEAzxLEubmMAQDPEsS5uYwBAM8SxLm5jAEAzxLEubmMAQDPEsS5uYwBAM8SxLm5jAEAzxLEubmMAQDPEsS5uYwBAM8SxLm5jAEAzxLEubmMAQDPEsS5uYwBAM8SxLm5jAEAzxLEubmMAQDPEsS5uYwBAM8SxLm5jAEAzxLEubmMAQDPEsS5uYwBAM8SxLm5jAEAzxLEubmMAQDPEsS5uYwBAM8SxLm5jAEAzxLEubmMAQDPEsS5uYwBAM8SxLm5jAEAzxLEubmMAQDPEsS5uYwBAM8SxLm5jAEAzxLEubmMAQDPEsS5uYwBAM8SxLm5jAEAzxLEubmMAQDPEsS5uYwBAM8SxLm5jAEAzxLEubmMAQDPEsS5uYwBAM8SxLm5jAEAzxLEubmMAQDPEsS5uYwBAM8SxLm5jAEAzxLEubmMAQDPEsS5uYwBAM8SxLm5jAEAzxLEubmMAQDPEsS5uYwBAM8SxLm5jAEAzxLEubmMAQDPEsS5uYwBAM8SxLm5jAEAzxLEubmMAQDPEsS5uYwBAM8SxLm5jAEAzxLEubmMAQDPEsS5uYwBAM8SxLm5jAEAzxLEubmMAQDPEsS5uYwBAM8SxLm5jAEAzxLEubmMAQDPEsS5uYwBAM8SxLm5jAEAzxLEubmMAQDPEsS5uYwBAM8SxLm5jAEAzxLEubmMAQDPEsS5uYwBAM8SxLm5jAEAzxLEubmMAQDPEsS5uYwBAM8SxLm5jAEAzxLEubmMAQDPEsS5uYwBAM8SxLm5jAEAzxLEubmMAQDPEsS5uYwBAM8SxLm5jAEAzxLEubmMAQDPEsS5uYwBAM8SxLm5jAEAzxLEubmMAQDPEsS5uYwBAM8SxLm5jAEAzxLEubmMAQDPEsS5uYwBAM8SxLm5jAEAzxLEubmMAQDPEsS5uYwBAM8SxLm5jAEAzxLEubmMAQDPEsS5uYwBAM8SxLm5jAEAzxLEubmMAQDPEsS5uYwBAM8SxLm5jAEAzxLEubmMAQDPEsS5uYwBAM8SxLm5jAEAzxLEubmMAQDPEsS5uYwBAM8SxLm5jAEAzxLEubmMAQDPEsS5uYwBAM8SxLm5jAEAzxLEubmMAQDPEsS5uYwBAM8SxLm5jAEAzxLEubmMAQDPEsS5uYwBAM8SxLm5jAEAzxLEubmMAQDPEsS5uYwBAM8SxLm5jAEAzxLEubmMAQDPEsS5uYwBAM8SxLm5jAEAzxLEubmMAQDPEsS5uYwBAM8SxLm5jAEA=\",\"dtype\":\"float64\",\"shape\":[1000]}},\"selected\":{\"id\":\"1228\",\"type\":\"Selection\"},\"selection_policy\":{\"id\":\"1227\",\"type\":\"UnionRenderers\"}},\"id\":\"1154\",\"type\":\"ColumnDataSource\"},{\"attributes\":{},\"id\":\"1223\",\"type\":\"UnionRenderers\"},{\"attributes\":{\"line_color\":\"#1f77b3\",\"line_width\":2,\"x\":{\"field\":\"x\"},\"y\":{\"field\":\"y\"}},\"id\":\"1197\",\"type\":\"Line\"},{\"attributes\":{\"ticker\":{\"id\":\"1174\",\"type\":\"BasicTicker\"}},\"id\":\"1177\",\"type\":\"Grid\"},{\"attributes\":{},\"id\":\"1241\",\"type\":\"UnionRenderers\"},{\"attributes\":{},\"id\":\"1234\",\"type\":\"BasicTickFormatter\"},{\"attributes\":{\"axis_label\":\"b\",\"formatter\":{\"id\":\"1234\",\"type\":\"BasicTickFormatter\"},\"ticker\":{\"id\":\"1179\",\"type\":\"BasicTicker\"}},\"id\":\"1178\",\"type\":\"LinearAxis\"}],\"root_ids\":[\"1251\"]},\"title\":\"Bokeh Application\",\"version\":\"1.4.0\"}};\n", " var render_items = [{\"docid\":\"ac6669b2-e49f-4fea-b1c0-6df540000bb0\",\"roots\":{\"1251\":\"1a638a04-b5a7-4bb6-9e84-68a29966561c\"}}];\n", " root.Bokeh.embed.embed_items_notebook(docs_json, render_items);\n", "\n", " }\n", " if (root.Bokeh !== undefined) {\n", " embed_document(root);\n", " } else {\n", " var attempts = 0;\n", " var timer = setInterval(function(root) {\n", " if (root.Bokeh !== undefined) {\n", " clearInterval(timer);\n", " embed_document(root);\n", " } else {\n", " attempts++;\n", " if (attempts > 100) {\n", " clearInterval(timer);\n", " console.log(\"Bokeh: ERROR: Unable to run BokehJS code because BokehJS library is missing\");\n", " }\n", " }\n", " }, 10, root)\n", " }\n", "})(window);" ], "application/vnd.bokehjs_exec.v0+json": "" }, "metadata": { "application/vnd.bokehjs_exec.v0+json": { "id": "1251" } }, "output_type": "display_data" } ], "source": [ "bokeh.io.show(\n", " bebi103.viz.trace_plot(\n", " samples_limited_warmup, pars=[\"alpha\", \"b\"], line_kwargs=dict(line_width=2)\n", " )\n", ")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "This is pathological; three of the chains are essentially not moving. One of the chains is moving very poorly. This means that most proposed steps are being rejeced.\n", "\n", "As is the case with all diagnostic metrics, there are caveats. You can read about them for $\\hat{R}$ in the Vehtari, et al. paper and in section [the Stan manual](https://mc-stan.org/docs/2_22/reference-manual/notation-for-samples-chains-and-draws.html)." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Effective samples size\n", "\n", "Recall that MCMC samplers do not draw independent samples from the target distribution. Rather, the samples are correlated. Ideally, though, we *would* draw independent samples. We would like to get an estimate for the number of *effectively independent* samples we draw. This is referred to either as **effective samples size** (ESS) or number of effective samples ($n_\\mathrm{eff}$).\n", "\n", "ArviZ computes ESS according to the prescription laid out in the Vehtari, et al. paper using `az.ess()`. In the summary, this is given in the `ess_bulk` column. " ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
meansdhpd_3%hpd_97%mcse_meanmcse_sdess_meaness_sdess_bulkess_tailr_hat
alpha4.5080.3953.7585.2230.0140.010820.0817.0819.0832.01.01
b16.7621.55214.02419.7750.0550.039800.0792.0806.0769.01.01
beta_0.0600.0060.0500.0710.0000.000806.0803.0806.0769.01.01
\n", "
" ], "text/plain": [ " mean sd hpd_3% hpd_97% mcse_mean mcse_sd ess_mean ess_sd \\\n", "alpha 4.508 0.395 3.758 5.223 0.014 0.010 820.0 817.0 \n", "b 16.762 1.552 14.024 19.775 0.055 0.039 800.0 792.0 \n", "beta_ 0.060 0.006 0.050 0.071 0.000 0.000 806.0 803.0 \n", "\n", " ess_bulk ess_tail r_hat \n", "alpha 819.0 832.0 1.01 \n", "b 806.0 769.0 1.01 \n", "beta_ 806.0 769.0 1.01 " ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ "az.summary(samples)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We took a total of 4000 steps (1000 on each of four chains), and got an ESS of about 800. This is a reasonable number, and as a rule of thumb, according to Vehtari, et al., you should have ESS > 400.\n", "\n", "We will not consider `ess_mean` or `ess_sd`, which are way of computing ESS used in the past, but we will consider `ess_tail`, referred to as tail-ESS. Again, I will not go into detail of how this is calculated, but this is the effective sample size when considering the more extreme values of the posterior (by default the lower and upper 5th percentiles). Note that this is not the number of samples that landed in the tails, but rather a measure of what the total number of effective samples would be if we were effectively sampling the tails. Again, we want tail-ESS to be greater than 400 as a rule of thumb. We have accomplished this here.\n", "\n", "Bear in mind that the ESS calculation is approximate and subject to error. There are, as usual, other caveats, which are discussed in the Vehtari, et al. paper and the [Stan manual](https://mc-stan.org/docs/2_22/reference-manual/effective-sample-size-section.html)." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Monte Carlo standard error\n", "\n", "The **Monte Carlo standard errors** (MCSE) are reported as `msce_mean` and `mcse_sd`. They are measurements of the standard error of the mean and the standard error of the standard deviation of the chains. They provide an estimate as to how accurate the expectation values given from MCMC samples of the mean and standard deviation are. In practice, if the MCSE of the mean is less than the standard deviation of the samples themselves (that is the `mcse_mean` column is much less than the `sd` column), we have taken plenty of samples. The only reason to use the MCSE is if we have a particular strong interest in getting very precise measurement of the mean in particular.\n", "\n", "I was hesitant to even discuss this hear, since I agree with [Gelman](https://statmodeling.stat.columbia.edu/2007/04/02/markov_chain_mo/), \"For Bayesian inference, I don't think it's generally necessary or appropriate to report Monte Carlo standard errors of posterior means and quantiles...\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Diagnostics for HMC\n", "\n", "Both $\\hat{R}$ and ESS are useful diagnostics for any MCMC sampler, but Hamiltonian Monte Carlo offers other diagnostics to help ensure that the sampling is going as it should. It is important to note that these diagnostics are a *feature* of HMC, not a bug. By that I mean that the absence of these diagnostics, particularly divergences, from other sampling methods means that it is harder to ensure that they are sampling properly. The ability to check that it is working properly makes HMC all the more powerful." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Divergences\n", "\n", "Hamiltonian Monte Carlo enables large step sizes by taking into account the shape of the target distribution and tracing trajectories along it. (This is of course a *very* loose description. You should read [Michael Betancourt's wonderful introduction to HMC](https://arxiv.org/abs/1701.02434) to get a more complete picture.) When a trajectory encounters a region of parameter space where the posterior (target) distribution has high curvature, the trajectory can veer sharply. These events can be detected and are registered as **divergences**. A given Monte Carlo step ends in a divergence if this happens. This does not *necessarily* mean that there is a problem with the sample, but there is a good chance that there is.\n", "\n", "Stan keeps track of divergences and reports them. In ArviZ `InferenceData` objects, they are stored in the `sample_stats` attribute. Let's look first at our good samples where we properly warmed up the sampler." ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "\n", "array([[False, False, False, ..., False, False, False],\n", " [False, False, False, ..., False, False, False],\n", " [False, False, False, ..., False, False, False],\n", " [False, False, False, ..., False, False, False]])\n", "Coordinates:\n", " * chain (chain) int64 0 1 2 3\n", " * draw (draw) int64 0 1 2 3 4 5 6 7 8 ... 992 993 994 995 996 997 998 999" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" } ], "source": [ "samples.sample_stats.diverging" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We can check how many divergences we had by summing them." ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "\n", "array(0)" ] }, "execution_count": 11, "metadata": {}, "output_type": "execute_result" } ], "source": [ "np.sum(samples.sample_stats.diverging)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "So, the properly warmed up sampler had no divergences. Let's look at the improperly warmed-up sampler." ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "\n", "array(2639)" ] }, "execution_count": 12, "metadata": {}, "output_type": "execute_result" } ], "source": [ "np.sum(samples_limited_warmup.sample_stats.diverging)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Yikes! All kinds of divergences there. This is endemic of a sampler in trouble.\n", "\n", "We will talk more about divergences later in this lesson and future lessons when we deal with distributions that are inherently difficult to sample, regardless of whether or not we warmed up properly." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Tree depth\n", "\n", "The explanation of this diagnostic is a little computer-sciencey, so you can skip to the last sentence of this section if the CS terms are unfamiliar to you.\n", "\n", "The HMC algorithm used by Stan uses [**recursion**](https://en.wikipedia.org/wiki/Recursion_(computer_science). In practice when doing recursive calculations, you need to put a bound on how deep the recursion can go, i.e., you need to cap the **tree depth**, left you get [stack overflow](https://en.wikipedia.org/wiki/Stack_buffer_overflow). Stan therefore has to have a limit on tree depth, the default of which is 10. If this tree depth is hit while trying to take a sample, the sampling is not wrong, but less efficient. Stan therefore reports the tree depth information for each sample. These are also included in the `sample_stats`." ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "\n", "array([[3, 2, 2, ..., 3, 1, 1],\n", " [2, 3, 3, ..., 3, 2, 3],\n", " [4, 2, 4, ..., 3, 4, 2],\n", " [3, 1, 2, ..., 2, 3, 2]])\n", "Coordinates:\n", " * chain (chain) int64 0 1 2 3\n", " * draw (draw) int64 0 1 2 3 4 5 6 7 8 ... 992 993 994 995 996 997 998 999" ] }, "execution_count": 13, "metadata": {}, "output_type": "execute_result" } ], "source": [ "samples.sample_stats.treedepth" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We can look how many hit a tree depth of 10." ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "\n", "array(0)" ] }, "execution_count": 14, "metadata": {}, "output_type": "execute_result" } ], "source": [ "np.sum(samples.sample_stats.treedepth == 10)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "So, in this case, we never hit the tree depth. When we do hit the tree depth often, it typically results in a less efficient sampler and the ESS will decrease." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### E-BFMI\n", "\n", "The **energy-Bayes fraction of missing information**, or E-BFMI is another metric that is specific to HMC samplers. Loosely speaking (again), it is a measure of how effective the sampler is at taking long steps. Some details are given in the [Betancourt paper on HMC](https://arxiv.org/abs/1701.02434), and we will not go into them here, but say that as a rule of thumb, values below 0.3 can be indicative of inefficient sampling.\n", "\n", "Stan also automatically computes the E-BFMI." ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "\n", "array([[1378.12, 1378.45, 1380.86, ..., 1378.52, 1378.32, 1378.38],\n", " [1377.65, 1380.72, 1378.59, ..., 1384.91, 1383.39, 1379.2 ],\n", " [1381.52, 1380.6 , 1380.34, ..., 1379.31, 1380.95, 1379.74],\n", " [1379.04, 1377.4 , 1378.61, ..., 1378.4 , 1378.58, 1377.86]])\n", "Coordinates:\n", " * chain (chain) int64 0 1 2 3\n", " * draw (draw) int64 0 1 2 3 4 5 6 7 8 ... 992 993 994 995 996 997 998 999" ] }, "execution_count": 15, "metadata": {}, "output_type": "execute_result" } ], "source": [ "samples.sample_stats.energy" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The energies all look high, but let's do a quick check to see if we have any small ones." ] }, { "cell_type": "code", "execution_count": 16, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "\n", "array(0)" ] }, "execution_count": 16, "metadata": {}, "output_type": "execute_result" } ], "source": [ "np.sum(samples.sample_stats.energy < 0.3)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Nope! We're in good shape." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Quickly checking the diagnostics\n", "\n", "I wrote a function, based on [work by Michael Betancourt](https://github.com/betanalpha/jupyter_case_studies/blob/master/pystan_workflow/stan_utility.py), to quickly check these diagnostics for a set of samples. It is available in the `bebi103.stan` submodule." ] }, { "cell_type": "code", "execution_count": 17, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Effective sample size looks reasonable for all parameters.\n", "Rhat for parameter b is 1.0105881427349097.\n", "Rhat for parameter beta_ is 1.0103045711150311.\n", " Rank-normalized Rhat above 1.01 indicates that the chains very likely have not mixed\n", "0 of 4000 (0.0%) iterations ended with a divergence.\n", "0 of 4000 (0.0%) iterations saturated the maximum tree depth of 10.\n", "E-BFMI indicated no pathological behavior.\n" ] }, { "data": { "text/plain": [ "2" ] }, "execution_count": 17, "metadata": {}, "output_type": "execute_result" } ], "source": [ "bebi103.stan.check_all_diagnostics(samples)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "This is a quick check you can do to make sure everything is in order after obtaining samples. But it is very important to note that passing all of these diagnostic checks does not ensure that you achieved effective sampling. And perhaps even more importantly, getting effective sampling certainly does not guarantee that your model is a good one. Nonetheless, good, identifiable models tend to pass the diagnostic checks more often than poor ones." ] }, { "cell_type": "code", "execution_count": 18, "metadata": {}, "outputs": [], "source": [ "bebi103.stan.clean_cmdstan()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Computing environment" ] }, { "cell_type": "code", "execution_count": 19, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "CPython 3.7.6\n", "IPython 7.11.1\n", "\n", "numpy 1.18.1\n", "pandas 0.24.2\n", "cmdstanpy 0.8.0\n", "arviz 0.6.1\n", "bokeh 1.4.0\n", "bebi103 0.0.51\n", "jupyterlab 1.2.5\n" ] } ], "source": [ "%load_ext watermark\n", "%watermark -v -p numpy,pandas,cmdstanpy,arviz,bokeh,bebi103,jupyterlab" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.6" } }, "nbformat": 4, "nbformat_minor": 4 }