BE/Bi 103 b: Statistical Inference in the Biological Sciences¶
- 1. Preparing your computer
- 2. Analytical approaches to Bayesian parameter estimation
- 3. Parameter estimation by optimization
- 4. Introduction to MCMC with Stan
- 5. Prior and posterior checks
- 6. MCMC diagnostics
- 7. Model comparison
- 8. Implementation of hierarchical models
- 9. Simulation based calibration in practice
- 1. Review of BE/Bi 103 a
- 2. Analytical and graphical methods for analysis of the posterior
- 3. Maximum a posteriori parameter estimation
- 4. Sampling with MCMC
- 5. Inference with Stan I
- 6. Practice building and assessing Bayesian models
- 7. Model comparison
- 8. Hierarchical models
- 9. Principled pipelines and hierarchical modeling of noise
- 10. The grand finale
- 11. Course feedback