1&&\"string\"==typeof v&&!d.checkClone&&je.test(v))return e.each((function(i){var o=e.eq(i);y&&(t[0]=v.call(this,i,o.html())),Me(o,t,n,r)}));if(p&&(a=(i=be(t,e[0].ownerDocument,!1,e,r)).firstChild,1===i.childNodes.length&&(i=a),a||r)){for(u=(s=w.map(ye(i,\"script\"),He)).length;f0&&me(a,!u&&ye(e,\"script\")),s},cleanData:function(e){for(var t,n,r,i=w.event.special,o=0;void 0!==(n=e[o]);o++)if(V(n)){if(t=n[Y.expando]){if(t.events)for(r in t.events)i[r]?w.event.remove(n,r):w.removeEvent(n,r,t.handle);n[Y.expando]=void 0}n[Q.expando]&&(n[Q.expando]=void 0)}}}),w.fn.extend({detach:function(e){return Ie(this,e,!0)},remove:function(e){return Ie(this,e)},text:function(e){return $(this,(function(e){return void 0===e?w.text(this):this.empty().each((function(){1!==this.nodeType&&11!==this.nodeType&&9!==this.nodeType||(this.textContent=e)}))}),null,e,arguments.length)},append:function(){return Me(this,arguments,(function(e){1!==this.nodeType&&11!==this.nodeType&&9!==this.nodeType||Le(this,e).appendChild(e)}))},prepend:function(){return Me(this,arguments,(function(e){if(1===this.nodeType||11===this.nodeType||9===this.nodeType){var t=Le(this,e);t.insertBefore(e,t.firstChild)}}))},before:function(){return Me(this,arguments,(function(e){this.parentNode&&this.parentNode.insertBefore(e,this)}))},after:function(){return Me(this,arguments,(function(e){this.parentNode&&this.parentNode.insertBefore(e,this.nextSibling)}))},empty:function(){for(var e,t=0;null!=(e=this[t]);t++)1===e.nodeType&&(w.cleanData(ye(e,!1)),e.textContent=\"\");return this},clone:function(e,t){return e=null!=e&&e,t=null==t?e:t,this.map((function(){return w.clone(this,e,t)}))},html:function(e){return $(this,(function(e){var t=this[0]||{},n=0,r=this.length;if(void 0===e&&1===t.nodeType)return t.innerHTML;if(\"string\"==typeof e&&!De.test(e)&&!ve[(he.exec(e)||[\"\",\"\"])[1].toLowerCase()]){e=w.htmlPrefilter(e);try{for(;n3,re.removeChild(t)),s}}))}();var Ue=[\"Webkit\",\"Moz\",\"ms\"],Xe=v.createElement(\"div\").style,Ve={};function Ge(e){var t=w.cssProps[e]||Ve[e];return t||(e in Xe?e:Ve[e]=function(e){for(var t=e[0].toUpperCase()+e.slice(1),n=Ue.length;n--;)if((e=Ue[n]+t)in Xe)return e}(e)||e)}var Ye=/^(none|table(?!-c[ea]).+)/,Qe=/^--/,Je={position:\"absolute\",visibility:\"hidden\",display:\"block\"},Ke={letterSpacing:\"0\",fontWeight:\"400\"};function Ze(e,t,n){var r=te.exec(t);return r?Math.max(0,r[2]-(n||0))+(r[3]||\"px\"):t}function et(e,t,n,r,i,o){var a=\"width\"===t?1:0,s=0,u=0;if(n===(r?\"border\":\"content\"))return 0;for(;a<4;a+=2)\"margin\"===n&&(u+=w.css(e,n+ne[a],!0,i)),r?(\"content\"===n&&(u-=w.css(e,\"padding\"+ne[a],!0,i)),\"margin\"!==n&&(u-=w.css(e,\"border\"+ne[a]+\"Width\",!0,i))):(u+=w.css(e,\"padding\"+ne[a],!0,i),\"padding\"!==n?u+=w.css(e,\"border\"+ne[a]+\"Width\",!0,i):s+=w.css(e,\"border\"+ne[a]+\"Width\",!0,i));return!r&&o>=0&&(u+=Math.max(0,Math.ceil(e[\"offset\"+t[0].toUpperCase()+t.slice(1)]-o-u-s-.5))||0),u}function tt(e,t,n){var r=Fe(e),i=(!d.boxSizingReliable()||n)&&\"border-box\"===w.css(e,\"boxSizing\",!1,r),o=i,a=_e(e,t,r),s=\"offset\"+t[0].toUpperCase()+t.slice(1);if(We.test(a)){if(!n)return a;a=\"auto\"}return(!d.boxSizingReliable()&&i||!d.reliableTrDimensions()&&A(e,\"tr\")||\"auto\"===a||!parseFloat(a)&&\"inline\"===w.css(e,\"display\",!1,r))&&e.getClientRects().length&&(i=\"border-box\"===w.css(e,\"boxSizing\",!1,r),(o=s in e)&&(a=e[s])),(a=parseFloat(a)||0)+et(e,t,n||(i?\"border\":\"content\"),o,r,a)+\"px\"}function nt(e,t,n,r,i){return new nt.prototype.init(e,t,n,r,i)}w.extend({cssHooks:{opacity:{get:function(e,t){if(t){var n=_e(e,\"opacity\");return\"\"===n?\"1\":n}}}},cssNumber:{animationIterationCount:!0,columnCount:!0,fillOpacity:!0,flexGrow:!0,flexShrink:!0,fontWeight:!0,gridArea:!0,gridColumn:!0,gridColumnEnd:!0,gridColumnStart:!0,gridRow:!0,gridRowEnd:!0,gridRowStart:!0,lineHeight:!0,opacity:!0,order:!0,orphans:!0,widows:!0,zIndex:!0,zoom:!0},cssProps:{},style:function(e,t,n,r){if(e&&3!==e.nodeType&&8!==e.nodeType&&e.style){var i,o,a,s=X(t),u=Qe.test(t),l=e.style;if(u||(t=Ge(s)),a=w.cssHooks[t]||w.cssHooks[s],void 0===n)return a&&\"get\"in a&&void 0!==(i=a.get(e,!1,r))?i:l[t];\"string\"===(o=typeof n)&&(i=te.exec(n))&&i[1]&&(n=se(e,t,i),o=\"number\"),null!=n&&n==n&&(\"number\"!==o||u||(n+=i&&i[3]||(w.cssNumber[s]?\"\":\"px\")),d.clearCloneStyle||\"\"!==n||0!==t.indexOf(\"background\")||(l[t]=\"inherit\"),a&&\"set\"in a&&void 0===(n=a.set(e,n,r))||(u?l.setProperty(t,n):l[t]=n))}},css:function(e,t,n,r){var i,o,a,s=X(t);return Qe.test(t)||(t=Ge(s)),(a=w.cssHooks[t]||w.cssHooks[s])&&\"get\"in a&&(i=a.get(e,!0,n)),void 0===i&&(i=_e(e,t,r)),\"normal\"===i&&t in Ke&&(i=Ke[t]),\"\"===n||n?(o=parseFloat(i),!0===n||isFinite(o)?o||0:i):i}}),w.each([\"height\",\"width\"],(function(e,t){w.cssHooks[t]={get:function(e,n,r){if(n)return!Ye.test(w.css(e,\"display\"))||e.getClientRects().length&&e.getBoundingClientRect().width?tt(e,t,r):Be(e,Je,(function(){return tt(e,t,r)}))},set:function(e,n,r){var i,o=Fe(e),a=!d.scrollboxSize()&&\"absolute\"===o.position,s=(a||r)&&\"border-box\"===w.css(e,\"boxSizing\",!1,o),u=r?et(e,t,r,s,o):0;return s&&a&&(u-=Math.ceil(e[\"offset\"+t[0].toUpperCase()+t.slice(1)]-parseFloat(o[t])-et(e,t,\"border\",!1,o)-.5)),u&&(i=te.exec(n))&&\"px\"!==(i[3]||\"px\")&&(e.style[t]=n,n=w.css(e,t)),Ze(0,n,u)}}})),w.cssHooks.marginLeft=ze(d.reliableMarginLeft,(function(e,t){if(t)return(parseFloat(_e(e,\"marginLeft\"))||e.getBoundingClientRect().left-Be(e,{marginLeft:0},(function(){return e.getBoundingClientRect().left})))+\"px\"})),w.each({margin:\"\",padding:\"\",border:\"Width\"},(function(e,t){w.cssHooks[e+t]={expand:function(n){for(var r=0,i={},o=\"string\"==typeof n?n.split(\" \"):[n];r<4;r++)i[e+ne[r]+t]=o[r]||o[r-2]||o[0];return i}},\"margin\"!==e&&(w.cssHooks[e+t].set=Ze)})),w.fn.extend({css:function(e,t){return $(this,(function(e,t,n){var r,i,o={},a=0;if(Array.isArray(t)){for(r=Fe(e),i=t.length;a1)}}),w.Tween=nt,nt.prototype={constructor:nt,init:function(e,t,n,r,i,o){this.elem=e,this.prop=n,this.easing=i||w.easing._default,this.options=t,this.start=this.now=this.cur(),this.end=r,this.unit=o||(w.cssNumber[n]?\"\":\"px\")},cur:function(){var e=nt.propHooks[this.prop];return e&&e.get?e.get(this):nt.propHooks._default.get(this)},run:function(e){var t,n=nt.propHooks[this.prop];return this.options.duration?this.pos=t=w.easing[this.easing](e,this.options.duration*e,0,1,this.options.duration):this.pos=t=e,this.now=(this.end-this.start)*t+this.start,this.options.step&&this.options.step.call(this.elem,this.now,this),n&&n.set?n.set(this):nt.propHooks._default.set(this),this}},nt.prototype.init.prototype=nt.prototype,nt.propHooks={_default:{get:function(e){var t;return 1!==e.elem.nodeType||null!=e.elem[e.prop]&&null==e.elem.style[e.prop]?e.elem[e.prop]:(t=w.css(e.elem,e.prop,\"\"))&&\"auto\"!==t?t:0},set:function(e){w.fx.step[e.prop]?w.fx.step[e.prop](e):1!==e.elem.nodeType||!w.cssHooks[e.prop]&&null==e.elem.style[Ge(e.prop)]?e.elem[e.prop]=e.now:w.style(e.elem,e.prop,e.now+e.unit)}}},nt.propHooks.scrollTop=nt.propHooks.scrollLeft={set:function(e){e.elem.nodeType&&e.elem.parentNode&&(e.elem[e.prop]=e.now)}},w.easing={linear:function(e){return e},swing:function(e){return.5-Math.cos(e*Math.PI)/2},_default:\"swing\"},w.fx=nt.prototype.init,w.fx.step={};var rt,it,ot=/^(?:toggle|show|hide)$/,at=/queueHooks$/;function st(){it&&(!1===v.hidden&&e.requestAnimationFrame?e.requestAnimationFrame(st):e.setTimeout(st,w.fx.interval),w.fx.tick())}function ut(){return e.setTimeout((function(){rt=void 0})),rt=Date.now()}function lt(e,t){var n,r=0,i={height:e};for(t=t?1:0;r<4;r+=2-t)i[\"margin\"+(n=ne[r])]=i[\"padding\"+n]=e;return t&&(i.opacity=i.width=e),i}function ct(e,t,n){for(var r,i=(ft.tweeners[t]||[]).concat(ft.tweeners[\"*\"]),o=0,a=i.length;o1)},removeAttr:function(e){return this.each((function(){w.removeAttr(this,e)}))}}),w.extend({attr:function(e,t,n){var r,i,o=e.nodeType;if(3!==o&&8!==o&&2!==o)return void 0===e.getAttribute?w.prop(e,t,n):(1===o&&w.isXMLDoc(e)||(i=w.attrHooks[t.toLowerCase()]||(w.expr.match.bool.test(t)?pt:void 0)),void 0!==n?null===n?void w.removeAttr(e,t):i&&\"set\"in i&&void 0!==(r=i.set(e,n,t))?r:(e.setAttribute(t,n+\"\"),n):i&&\"get\"in i&&null!==(r=i.get(e,t))?r:null==(r=w.find.attr(e,t))?void 0:r)},attrHooks:{type:{set:function(e,t){if(!d.radioValue&&\"radio\"===t&&A(e,\"input\")){var n=e.value;return e.setAttribute(\"type\",t),n&&(e.value=n),t}}}},removeAttr:function(e,t){var n,r=0,i=t&&t.match(P);if(i&&1===e.nodeType)for(;n=i[r++];)e.removeAttribute(n)}}),pt={set:function(e,t,n){return!1===t?w.removeAttr(e,n):e.setAttribute(n,n),n}},w.each(w.expr.match.bool.source.match(/\\w+/g),(function(e,t){var n=dt[t]||w.find.attr;dt[t]=function(e,t,r){var i,o,a=t.toLowerCase();return r||(o=dt[a],dt[a]=i,i=null!=n(e,t,r)?a:null,dt[a]=o),i}}));var ht=/^(?:input|select|textarea|button)$/i,gt=/^(?:a|area)$/i;function vt(e){return(e.match(P)||[]).join(\" \")}function yt(e){return e.getAttribute&&e.getAttribute(\"class\")||\"\"}function mt(e){return Array.isArray(e)?e:\"string\"==typeof e&&e.match(P)||[]}w.fn.extend({prop:function(e,t){return $(this,w.prop,e,t,arguments.length>1)},removeProp:function(e){return this.each((function(){delete this[w.propFix[e]||e]}))}}),w.extend({prop:function(e,t,n){var r,i,o=e.nodeType;if(3!==o&&8!==o&&2!==o)return 1===o&&w.isXMLDoc(e)||(t=w.propFix[t]||t,i=w.propHooks[t]),void 0!==n?i&&\"set\"in i&&void 0!==(r=i.set(e,n,t))?r:e[t]=n:i&&\"get\"in i&&null!==(r=i.get(e,t))?r:e[t]},propHooks:{tabIndex:{get:function(e){var t=w.find.attr(e,\"tabindex\");return t?parseInt(t,10):ht.test(e.nodeName)||gt.test(e.nodeName)&&e.href?0:-1}}},propFix:{for:\"htmlFor\",class:\"className\"}}),d.optSelected||(w.propHooks.selected={get:function(e){var t=e.parentNode;return t&&t.parentNode&&t.parentNode.selectedIndex,null},set:function(e){var t=e.parentNode;t&&(t.selectedIndex,t.parentNode&&t.parentNode.selectedIndex)}}),w.each([\"tabIndex\",\"readOnly\",\"maxLength\",\"cellSpacing\",\"cellPadding\",\"rowSpan\",\"colSpan\",\"useMap\",\"frameBorder\",\"contentEditable\"],(function(){w.propFix[this.toLowerCase()]=this})),w.fn.extend({addClass:function(e){var t,n,r,i,o,a,s,u=0;if(h(e))return this.each((function(t){w(this).addClass(e.call(this,t,yt(this)))}));if((t=mt(e)).length)for(;n=this[u++];)if(i=yt(n),r=1===n.nodeType&&\" \"+vt(i)+\" \"){for(a=0;o=t[a++];)r.indexOf(\" \"+o+\" \")<0&&(r+=o+\" \");i!==(s=vt(r))&&n.setAttribute(\"class\",s)}return this},removeClass:function(e){var t,n,r,i,o,a,s,u=0;if(h(e))return this.each((function(t){w(this).removeClass(e.call(this,t,yt(this)))}));if(!arguments.length)return this.attr(\"class\",\"\");if((t=mt(e)).length)for(;n=this[u++];)if(i=yt(n),r=1===n.nodeType&&\" \"+vt(i)+\" \"){for(a=0;o=t[a++];)for(;r.indexOf(\" \"+o+\" \")>-1;)r=r.replace(\" \"+o+\" \",\" \");i!==(s=vt(r))&&n.setAttribute(\"class\",s)}return this},toggleClass:function(e,t){var n=typeof e,r=\"string\"===n||Array.isArray(e);return\"boolean\"==typeof t&&r?t?this.addClass(e):this.removeClass(e):h(e)?this.each((function(n){w(this).toggleClass(e.call(this,n,yt(this),t),t)})):this.each((function(){var t,i,o,a;if(r)for(i=0,o=w(this),a=mt(e);t=a[i++];)o.hasClass(t)?o.removeClass(t):o.addClass(t);else void 0!==e&&\"boolean\"!==n||((t=yt(this))&&Y.set(this,\"__className__\",t),this.setAttribute&&this.setAttribute(\"class\",t||!1===e?\"\":Y.get(this,\"__className__\")||\"\"))}))},hasClass:function(e){var t,n,r=0;for(t=\" \"+e+\" \";n=this[r++];)if(1===n.nodeType&&(\" \"+vt(yt(n))+\" \").indexOf(t)>-1)return!0;return!1}});var xt=/\\r/g;w.fn.extend({val:function(e){var t,n,r,i=this[0];return arguments.length?(r=h(e),this.each((function(n){var i;1===this.nodeType&&(null==(i=r?e.call(this,n,w(this).val()):e)?i=\"\":\"number\"==typeof i?i+=\"\":Array.isArray(i)&&(i=w.map(i,(function(e){return null==e?\"\":e+\"\"}))),(t=w.valHooks[this.type]||w.valHooks[this.nodeName.toLowerCase()])&&\"set\"in t&&void 0!==t.set(this,i,\"value\")||(this.value=i))}))):i?(t=w.valHooks[i.type]||w.valHooks[i.nodeName.toLowerCase()])&&\"get\"in t&&void 0!==(n=t.get(i,\"value\"))?n:\"string\"==typeof(n=i.value)?n.replace(xt,\"\"):null==n?\"\":n:void 0}}),w.extend({valHooks:{option:{get:function(e){var t=w.find.attr(e,\"value\");return null!=t?t:vt(w.text(e))}},select:{get:function(e){var t,n,r,i=e.options,o=e.selectedIndex,a=\"select-one\"===e.type,s=a?null:[],u=a?o+1:i.length;for(r=o<0?u:a?o:0;r-1)&&(n=!0);return n||(e.selectedIndex=-1),o}}}}),w.each([\"radio\",\"checkbox\"],(function(){w.valHooks[this]={set:function(e,t){if(Array.isArray(t))return e.checked=w.inArray(w(e).val(),t)>-1}},d.checkOn||(w.valHooks[this].get=function(e){return null===e.getAttribute(\"value\")?\"on\":e.value})})),d.focusin=\"onfocusin\"in e;var bt=/^(?:focusinfocus|focusoutblur)$/,wt=function(e){e.stopPropagation()};w.extend(w.event,{trigger:function(t,n,r,i){var o,a,s,u,l,f,p,d,y=[r||v],m=c.call(t,\"type\")?t.type:t,x=c.call(t,\"namespace\")?t.namespace.split(\".\"):[];if(a=d=s=r=r||v,3!==r.nodeType&&8!==r.nodeType&&!bt.test(m+w.event.triggered)&&(m.indexOf(\".\")>-1&&(x=m.split(\".\"),m=x.shift(),x.sort()),l=m.indexOf(\":\")<0&&\"on\"+m,(t=t[w.expando]?t:new w.Event(m,\"object\"==typeof t&&t)).isTrigger=i?2:3,t.namespace=x.join(\".\"),t.rnamespace=t.namespace?new RegExp(\"(^|\\\\.)\"+x.join(\"\\\\.(?:.*\\\\.|)\")+\"(\\\\.|$)\"):null,t.result=void 0,t.target||(t.target=r),n=null==n?[t]:w.makeArray(n,[t]),p=w.event.special[m]||{},i||!p.trigger||!1!==p.trigger.apply(r,n))){if(!i&&!p.noBubble&&!g(r)){for(u=p.delegateType||m,bt.test(u+m)||(a=a.parentNode);a;a=a.parentNode)y.push(a),s=a;s===(r.ownerDocument||v)&&y.push(s.defaultView||s.parentWindow||e)}for(o=0;(a=y[o++])&&!t.isPropagationStopped();)d=a,t.type=o>1?u:p.bindType||m,(f=(Y.get(a,\"events\")||Object.create(null))[t.type]&&Y.get(a,\"handle\"))&&f.apply(a,n),(f=l&&a[l])&&f.apply&&V(a)&&(t.result=f.apply(a,n),!1===t.result&&t.preventDefault());return t.type=m,i||t.isDefaultPrevented()||p._default&&!1!==p._default.apply(y.pop(),n)||!V(r)||l&&h(r[m])&&!g(r)&&((s=r[l])&&(r[l]=null),w.event.triggered=m,t.isPropagationStopped()&&d.addEventListener(m,wt),r[m](),t.isPropagationStopped()&&d.removeEventListener(m,wt),w.event.triggered=void 0,s&&(r[l]=s)),t.result}},simulate:function(e,t,n){var r=w.extend(new w.Event,n,{type:e,isSimulated:!0});w.event.trigger(r,null,t)}}),w.fn.extend({trigger:function(e,t){return this.each((function(){w.event.trigger(e,t,this)}))},triggerHandler:function(e,t){var n=this[0];if(n)return w.event.trigger(e,t,n,!0)}}),d.focusin||w.each({focus:\"focusin\",blur:\"focusout\"},(function(e,t){var n=function(e){w.event.simulate(t,e.target,w.event.fix(e))};w.event.special[t]={setup:function(){var r=this.ownerDocument||this.document||this,i=Y.access(r,t);i||r.addEventListener(e,n,!0),Y.access(r,t,(i||0)+1)},teardown:function(){var r=this.ownerDocument||this.document||this,i=Y.access(r,t)-1;i?Y.access(r,t,i):(r.removeEventListener(e,n,!0),Y.remove(r,t))}}}));var Tt=e.location,Ct={guid:Date.now()},Et=/\\?/;w.parseXML=function(t){var n;if(!t||\"string\"!=typeof t)return null;try{n=(new e.DOMParser).parseFromString(t,\"text/xml\")}catch(e){n=void 0}return n&&!n.getElementsByTagName(\"parsererror\").length||w.error(\"Invalid XML: \"+t),n};var St=/\\[\\]$/,kt=/\\r?\\n/g,At=/^(?:submit|button|image|reset|file)$/i,Nt=/^(?:input|select|textarea|keygen)/i;function Dt(e,t,n,r){var i;if(Array.isArray(t))w.each(t,(function(t,i){n||St.test(e)?r(e,i):Dt(e+\"[\"+(\"object\"==typeof i&&null!=i?t:\"\")+\"]\",i,n,r)}));else if(n||\"object\"!==x(t))r(e,t);else for(i in t)Dt(e+\"[\"+i+\"]\",t[i],n,r)}w.param=function(e,t){var n,r=[],i=function(e,t){var n=h(t)?t():t;r[r.length]=encodeURIComponent(e)+\"=\"+encodeURIComponent(null==n?\"\":n)};if(null==e)return\"\";if(Array.isArray(e)||e.jquery&&!w.isPlainObject(e))w.each(e,(function(){i(this.name,this.value)}));else for(n in e)Dt(n,e[n],t,i);return r.join(\"&\")},w.fn.extend({serialize:function(){return w.param(this.serializeArray())},serializeArray:function(){return this.map((function(){var e=w.prop(this,\"elements\");return e?w.makeArray(e):this})).filter((function(){var e=this.type;return this.name&&!w(this).is(\":disabled\")&&Nt.test(this.nodeName)&&!At.test(e)&&(this.checked||!de.test(e))})).map((function(e,t){var n=w(this).val();return null==n?null:Array.isArray(n)?w.map(n,(function(e){return{name:t.name,value:e.replace(kt,\"\\r\\n\")}})):{name:t.name,value:n.replace(kt,\"\\r\\n\")}})).get()}});var jt=/%20/g,qt=/#.*$/,Lt=/([?&])_=[^&]*/,Ht=/^(.*?):[ \\t]*([^\\r\\n]*)$/gm,Ot=/^(?:GET|HEAD)$/,Pt=/^\\/\\//,Rt={},Mt={},It=\"*/\".concat(\"*\"),Wt=v.createElement(\"a\");function Ft(e){return function(t,n){\"string\"!=typeof t&&(n=t,t=\"*\");var r,i=0,o=t.toLowerCase().match(P)||[];if(h(n))for(;r=o[i++];)\"+\"===r[0]?(r=r.slice(1)||\"*\",(e[r]=e[r]||[]).unshift(n)):(e[r]=e[r]||[]).push(n)}}function Bt(e,t,n,r){var i={},o=e===Mt;function a(s){var u;return i[s]=!0,w.each(e[s]||[],(function(e,s){var l=s(t,n,r);return\"string\"!=typeof l||o||i[l]?o?!(u=l):void 0:(t.dataTypes.unshift(l),a(l),!1)})),u}return a(t.dataTypes[0])||!i[\"*\"]&&a(\"*\")}function $t(e,t){var n,r,i=w.ajaxSettings.flatOptions||{};for(n in t)void 0!==t[n]&&((i[n]?e:r||(r={}))[n]=t[n]);return r&&w.extend(!0,e,r),e}Wt.href=Tt.href,w.extend({active:0,lastModified:{},etag:{},ajaxSettings:{url:Tt.href,type:\"GET\",isLocal:/^(?:about|app|app-storage|.+-extension|file|res|widget):$/.test(Tt.protocol),global:!0,processData:!0,async:!0,contentType:\"application/x-www-form-urlencoded; charset=UTF-8\",accepts:{\"*\":It,text:\"text/plain\",html:\"text/html\",xml:\"application/xml, text/xml\",json:\"application/json, text/javascript\"},contents:{xml:/\\bxml\\b/,html:/\\bhtml/,json:/\\bjson\\b/},responseFields:{xml:\"responseXML\",text:\"responseText\",json:\"responseJSON\"},converters:{\"* text\":String,\"text html\":!0,\"text json\":JSON.parse,\"text xml\":w.parseXML},flatOptions:{url:!0,context:!0}},ajaxSetup:function(e,t){return t?$t($t(e,w.ajaxSettings),t):$t(w.ajaxSettings,e)},ajaxPrefilter:Ft(Rt),ajaxTransport:Ft(Mt),ajax:function(t,n){\"object\"==typeof t&&(n=t,t=void 0),n=n||{};var r,i,o,a,s,u,l,c,f,p,d=w.ajaxSetup({},n),h=d.context||d,g=d.context&&(h.nodeType||h.jquery)?w(h):w.event,y=w.Deferred(),m=w.Callbacks(\"once memory\"),x=d.statusCode||{},b={},T={},C=\"canceled\",E={readyState:0,getResponseHeader:function(e){var t;if(l){if(!a)for(a={};t=Ht.exec(o);)a[t[1].toLowerCase()+\" \"]=(a[t[1].toLowerCase()+\" \"]||[]).concat(t[2]);t=a[e.toLowerCase()+\" \"]}return null==t?null:t.join(\", \")},getAllResponseHeaders:function(){return l?o:null},setRequestHeader:function(e,t){return null==l&&(e=T[e.toLowerCase()]=T[e.toLowerCase()]||e,b[e]=t),this},overrideMimeType:function(e){return null==l&&(d.mimeType=e),this},statusCode:function(e){var t;if(e)if(l)E.always(e[E.status]);else for(t in e)x[t]=[x[t],e[t]];return this},abort:function(e){var t=e||C;return r&&r.abort(t),S(0,t),this}};if(y.promise(E),d.url=((t||d.url||Tt.href)+\"\").replace(Pt,Tt.protocol+\"//\"),d.type=n.method||n.type||d.method||d.type,d.dataTypes=(d.dataType||\"*\").toLowerCase().match(P)||[\"\"],null==d.crossDomain){u=v.createElement(\"a\");try{u.href=d.url,u.href=u.href,d.crossDomain=Wt.protocol+\"//\"+Wt.host!=u.protocol+\"//\"+u.host}catch(e){d.crossDomain=!0}}if(d.data&&d.processData&&\"string\"!=typeof d.data&&(d.data=w.param(d.data,d.traditional)),Bt(Rt,d,n,E),l)return E;for(f in(c=w.event&&d.global)&&0==w.active++&&w.event.trigger(\"ajaxStart\"),d.type=d.type.toUpperCase(),d.hasContent=!Ot.test(d.type),i=d.url.replace(qt,\"\"),d.hasContent?d.data&&d.processData&&0===(d.contentType||\"\").indexOf(\"application/x-www-form-urlencoded\")&&(d.data=d.data.replace(jt,\"+\")):(p=d.url.slice(i.length),d.data&&(d.processData||\"string\"==typeof d.data)&&(i+=(Et.test(i)?\"&\":\"?\")+d.data,delete d.data),!1===d.cache&&(i=i.replace(Lt,\"$1\"),p=(Et.test(i)?\"&\":\"?\")+\"_=\"+Ct.guid+++p),d.url=i+p),d.ifModified&&(w.lastModified[i]&&E.setRequestHeader(\"If-Modified-Since\",w.lastModified[i]),w.etag[i]&&E.setRequestHeader(\"If-None-Match\",w.etag[i])),(d.data&&d.hasContent&&!1!==d.contentType||n.contentType)&&E.setRequestHeader(\"Content-Type\",d.contentType),E.setRequestHeader(\"Accept\",d.dataTypes[0]&&d.accepts[d.dataTypes[0]]?d.accepts[d.dataTypes[0]]+(\"*\"!==d.dataTypes[0]?\", \"+It+\"; q=0.01\":\"\"):d.accepts[\"*\"]),d.headers)E.setRequestHeader(f,d.headers[f]);if(d.beforeSend&&(!1===d.beforeSend.call(h,E,d)||l))return E.abort();if(C=\"abort\",m.add(d.complete),E.done(d.success),E.fail(d.error),r=Bt(Mt,d,n,E)){if(E.readyState=1,c&&g.trigger(\"ajaxSend\",[E,d]),l)return E;d.async&&d.timeout>0&&(s=e.setTimeout((function(){E.abort(\"timeout\")}),d.timeout));try{l=!1,r.send(b,S)}catch(e){if(l)throw e;S(-1,e)}}else S(-1,\"No Transport\");function S(t,n,a,u){var f,p,v,b,T,C=n;l||(l=!0,s&&e.clearTimeout(s),r=void 0,o=u||\"\",E.readyState=t>0?4:0,f=t>=200&&t<300||304===t,a&&(b=function(e,t,n){for(var r,i,o,a,s=e.contents,u=e.dataTypes;\"*\"===u[0];)u.shift(),void 0===r&&(r=e.mimeType||t.getResponseHeader(\"Content-Type\"));if(r)for(i in s)if(s[i]&&s[i].test(r)){u.unshift(i);break}if(u[0]in n)o=u[0];else{for(i in n){if(!u[0]||e.converters[i+\" \"+u[0]]){o=i;break}a||(a=i)}o=o||a}if(o)return o!==u[0]&&u.unshift(o),n[o]}(d,E,a)),!f&&w.inArray(\"script\",d.dataTypes)>-1&&(d.converters[\"text script\"]=function(){}),b=function(e,t,n,r){var i,o,a,s,u,l={},c=e.dataTypes.slice();if(c[1])for(a in e.converters)l[a.toLowerCase()]=e.converters[a];for(o=c.shift();o;)if(e.responseFields[o]&&(n[e.responseFields[o]]=t),!u&&r&&e.dataFilter&&(t=e.dataFilter(t,e.dataType)),u=o,o=c.shift())if(\"*\"===o)o=u;else if(\"*\"!==u&&u!==o){if(!(a=l[u+\" \"+o]||l[\"* \"+o]))for(i in l)if((s=i.split(\" \"))[1]===o&&(a=l[u+\" \"+s[0]]||l[\"* \"+s[0]])){!0===a?a=l[i]:!0!==l[i]&&(o=s[0],c.unshift(s[1]));break}if(!0!==a)if(a&&e.throws)t=a(t);else try{t=a(t)}catch(e){return{state:\"parsererror\",error:a?e:\"No conversion from \"+u+\" to \"+o}}}return{state:\"success\",data:t}}(d,b,E,f),f?(d.ifModified&&((T=E.getResponseHeader(\"Last-Modified\"))&&(w.lastModified[i]=T),(T=E.getResponseHeader(\"etag\"))&&(w.etag[i]=T)),204===t||\"HEAD\"===d.type?C=\"nocontent\":304===t?C=\"notmodified\":(C=b.state,p=b.data,f=!(v=b.error))):(v=C,!t&&C||(C=\"error\",t<0&&(t=0))),E.status=t,E.statusText=(n||C)+\"\",f?y.resolveWith(h,[p,C,E]):y.rejectWith(h,[E,C,v]),E.statusCode(x),x=void 0,c&&g.trigger(f?\"ajaxSuccess\":\"ajaxError\",[E,d,f?p:v]),m.fireWith(h,[E,C]),c&&(g.trigger(\"ajaxComplete\",[E,d]),--w.active||w.event.trigger(\"ajaxStop\")))}return E},getJSON:function(e,t,n){return w.get(e,t,n,\"json\")},getScript:function(e,t){return w.get(e,void 0,t,\"script\")}}),w.each([\"get\",\"post\"],(function(e,t){w[t]=function(e,n,r,i){return h(n)&&(i=i||r,r=n,n=void 0),w.ajax(w.extend({url:e,type:t,dataType:i,data:n,success:r},w.isPlainObject(e)&&e))}})),w.ajaxPrefilter((function(e){var t;for(t in e.headers)\"content-type\"===t.toLowerCase()&&(e.contentType=e.headers[t]||\"\")})),w._evalUrl=function(e,t,n){return w.ajax({url:e,type:\"GET\",dataType:\"script\",cache:!0,async:!1,global:!1,converters:{\"text script\":function(){}},dataFilter:function(e){w.globalEval(e,t,n)}})},w.fn.extend({wrapAll:function(e){var t;return this[0]&&(h(e)&&(e=e.call(this[0])),t=w(e,this[0].ownerDocument).eq(0).clone(!0),this[0].parentNode&&t.insertBefore(this[0]),t.map((function(){for(var e=this;e.firstElementChild;)e=e.firstElementChild;return e})).append(this)),this},wrapInner:function(e){return h(e)?this.each((function(t){w(this).wrapInner(e.call(this,t))})):this.each((function(){var t=w(this),n=t.contents();n.length?n.wrapAll(e):t.append(e)}))},wrap:function(e){var t=h(e);return this.each((function(n){w(this).wrapAll(t?e.call(this,n):e)}))},unwrap:function(e){return this.parent(e).not(\"body\").each((function(){w(this).replaceWith(this.childNodes)})),this}}),w.expr.pseudos.hidden=function(e){return!w.expr.pseudos.visible(e)},w.expr.pseudos.visible=function(e){return!!(e.offsetWidth||e.offsetHeight||e.getClientRects().length)},w.ajaxSettings.xhr=function(){try{return new e.XMLHttpRequest}catch(e){}};var _t={0:200,1223:204},zt=w.ajaxSettings.xhr();d.cors=!!zt&&\"withCredentials\"in zt,d.ajax=zt=!!zt,w.ajaxTransport((function(t){var n,r;if(d.cors||zt&&!t.crossDomain)return{send:function(i,o){var a,s=t.xhr();if(s.open(t.type,t.url,t.async,t.username,t.password),t.xhrFields)for(a in t.xhrFields)s[a]=t.xhrFields[a];for(a in t.mimeType&&s.overrideMimeType&&s.overrideMimeType(t.mimeType),t.crossDomain||i[\"X-Requested-With\"]||(i[\"X-Requested-With\"]=\"XMLHttpRequest\"),i)s.setRequestHeader(a,i[a]);n=function(e){return function(){n&&(n=r=s.onload=s.onerror=s.onabort=s.ontimeout=s.onreadystatechange=null,\"abort\"===e?s.abort():\"error\"===e?\"number\"!=typeof s.status?o(0,\"error\"):o(s.status,s.statusText):o(_t[s.status]||s.status,s.statusText,\"text\"!==(s.responseType||\"text\")||\"string\"!=typeof s.responseText?{binary:s.response}:{text:s.responseText},s.getAllResponseHeaders()))}},s.onload=n(),r=s.onerror=s.ontimeout=n(\"error\"),void 0!==s.onabort?s.onabort=r:s.onreadystatechange=function(){4===s.readyState&&e.setTimeout((function(){n&&r()}))},n=n(\"abort\");try{s.send(t.hasContent&&t.data||null)}catch(e){if(n)throw e}},abort:function(){n&&n()}}})),w.ajaxPrefilter((function(e){e.crossDomain&&(e.contents.script=!1)})),w.ajaxSetup({accepts:{script:\"text/javascript, application/javascript, application/ecmascript, application/x-ecmascript\"},contents:{script:/\\b(?:java|ecma)script\\b/},converters:{\"text script\":function(e){return w.globalEval(e),e}}}),w.ajaxPrefilter(\"script\",(function(e){void 0===e.cache&&(e.cache=!1),e.crossDomain&&(e.type=\"GET\")})),w.ajaxTransport(\"script\",(function(e){var t,n;if(e.crossDomain||e.scriptAttrs)return{send:function(r,i){t=w(\""
],
"text/plain": [
":VectorField [x,y] (Angle,Magnitude)"
]
},
"execution_count": 7,
"metadata": {
"application/vnd.holoviews_exec.v0+json": {
"id": "1452"
}
},
"output_type": "execute_result"
}
],
"source": [
"xs, ys = np.linspace(-4, 4, 16), np.linspace(-4, 4, 16)\n",
"X, Y = np.meshgrid(xs, ys)\n",
"\n",
"# Convert U, V to magnitude and angle\n",
"mag = np.sqrt(X**2 + Y**2)\n",
"angle = (np.pi/2.0) - np.arctan2(Y / mag, -X / mag)\n",
"\n",
"vectorfield = hv.VectorField(\n",
" (xs, ys, angle, mag)\n",
").opts(\n",
" magnitude='Magnitude', \n",
" height=400, \n",
" width=400, \n",
" #cmap='viridis', \n",
" color='gray',\n",
" xlabel=\"q\",\n",
" ylabel=\"p\",\n",
" alpha=0.6\n",
")\n",
"\n",
"vectorfield"
]
},
{
"cell_type": "markdown",
"id": "marked-manufacturer",
"metadata": {},
"source": [
"So where ever we start in phase space, the vector fields tells us where to go. And the time evolution is given by Hamilton's equations.\n",
"\n",
"For illustration purpose, you can download a Bokeh app with small animation of a spring and the resulting trajectory in phase space [here](oscillator.py). To view the Bokeh app, you can serve it up from the command line by doing\n",
"\n",
"```bash\n",
"bokeh serve --show oscillator.py\n",
"```\n",
"\n",
"Alternatively, you can enter the above command preceded by a `!` in a cell in a Jupyter notebook. You'll have interrupt the kernel when you are done with the animation."
]
},
{
"cell_type": "markdown",
"id": "better-possession",
"metadata": {},
"source": [
"## Hamiltonian Monte Carlo\n",
"\n",
"Let's put our knowledge of Hamiltonians to use. First we need to choose our Hamiltonian Function, for which we take the log of a joint distribution of both variables,\n",
"\n",
"\\begin{align}\n",
"H(q,p) = -\\log\\pi(q,p) = -\\log\\pi(p|q) - \\log\\pi(q).\n",
"\\end{align}\n",
"\n",
"In therms of potential and kinetic energy this reads as,\n",
"\n",
"\\begin{align}\n",
"H(q,p) = T(q,p) + U(q).\n",
"\\end{align}\n",
"\n",
"The trick is to identify $q$ as the parameters of interest and $U(q) = -\\log\\pi(q)$ as the negative log posterior. Let's look again and Hamilton's equations,\n",
"\n",
"\\begin{align}\n",
"\\frac{\\partial q}{\\partial t} = \\frac{\\partial T}{\\partial p} \\qquad \\frac{\\partial p}{\\partial t} = -\\frac{\\partial T}{\\partial q} -\\frac{\\partial U}{\\partial q}\n",
"\\end{align}\n",
"\n",
"The only thing we are left with is to choose a kinetic energy. How we choose a kinetic energy will be discussed in the next section. Assume for now that we have chosen a kinetic energy and know its derivative. Then we can compute the trajectories for both momentum and location (our parameters)! As we said before, we want to sample out of the typical set, which means that we want to find a trajectory which follows the typical set. By sampling out of the typical set of the joint distribution we automatically sample out of the typical set of the posterior distribution.\n",
"\n",
"\n",
"\n",
"(Image taken from [Betancourt, Michael. \"A conceptual introduction to Hamiltonian Monte Carlo.\" arXiv preprint arXiv:1701.02434 (2017).](https://arxiv.org/abs/1701.02434))"
]
},
{
"cell_type": "markdown",
"id": "gothic-queensland",
"metadata": {},
"source": [
"## Transition using HMC\n",
"\n",
"Assume we are at a given position in parameter space $q$ (we have an initial condition of parameters), then we need to come up with a kinetic energy function and a set of momenta $p$ (a set because we need one momentum per dimension). Once we made that choice, we can simply use Hamilton's equations to integrate forward and find a new sample of parameters. As we discussed earlier, that just means that we follow the path in phase space that corresponds to that certain value of energy that we chose. A transition would look something like this."
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "crude-challenge",
"metadata": {},
"outputs": [
{
"data": {},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.holoviews_exec.v0+json": "",
"text/html": [
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"
\n",
"
\n",
""
],
"text/plain": [
":Overlay\n",
" .Scatter.I :Scatter [x] (y)\n",
" .Scatter.II :Scatter [x] (y)\n",
" .VectorField.I :VectorField [x,y] (Angle,Magnitude)\n",
" .Curve.I :Curve [x] (y)\n",
" .Curve.II :Curve [x] (y)\n",
" .Curve.III :Curve [x] (y)\n",
" .Curve.IV :Curve [x] (y)\n",
" .Curve.V :Curve [x] (y)\n",
" .Curve.VI :Curve [x] (y)\n",
" .Curve.VII :Curve [x] (y)"
]
},
"execution_count": 8,
"metadata": {
"application/vnd.holoviews_exec.v0+json": {
"id": "1572"
}
},
"output_type": "execute_result"
}
],
"source": [
"H = 9\n",
"color = bokeh.palettes.BuPu[4][0]\n",
"x_arr = np.linspace(-np.sqrt(H), np.sqrt(H), 1000)\n",
"p_plus = simple_oscillator(H, x_arr)\n",
"p_minus = -simple_oscillator(H, x_arr)\n",
"\n",
"scatter1 = hv.Scatter(([x_arr[100], x_arr[300]], [p_plus[100], p_plus[300]])).opts(\n",
" size=10, color=\"orange\", alpha=0.5\n",
")\n",
"scatter2 = hv.Scatter(([x_arr[100], x_arr[300]], [0, 0])).opts(size=10, color=\"orange\")\n",
"arrow1 = hv.Curve(([x_arr[100], x_arr[100]], [0, p_plus[100] - 0.1])).opts(\n",
" color=\"orange\", alpha=0.5\n",
")\n",
"arrow1_1 = hv.Curve(\n",
" ([x_arr[100] - 0.2, x_arr[100]], [p_plus[100] - 0.3, p_plus[100] - 0.1])\n",
").opts(color=\"orange\", alpha=0.5)\n",
"arrow1_2 = hv.Curve(\n",
" ([x_arr[100] + 0.2, x_arr[100]], [p_plus[100] - 0.3, p_plus[100] - 0.1])\n",
").opts(color=\"orange\", alpha=0.5)\n",
"arrow2 = hv.Curve(([x_arr[300], x_arr[300]], [0.1, p_plus[300]])).opts(\n",
" color=\"orange\", alpha=0.5\n",
")\n",
"arrow2_1 = hv.Curve(([x_arr[300] - 0.2, x_arr[300]], [0.3, 0.1])).opts(\n",
" color=\"orange\", alpha=0.5\n",
")\n",
"arrow2_2 = hv.Curve(([x_arr[300] + 0.2, x_arr[300]], [0.3, 0.1])).opts(\n",
" color=\"orange\", alpha=0.5\n",
")\n",
"partial_H = hv.Curve((x_arr[100:300], p_plus[100:300])).opts(color=\"orange\", alpha=0.5)\n",
"joint = (\n",
" scatter1\n",
" * scatter2\n",
" * vectorfield\n",
" * arrow1\n",
" * arrow2\n",
" * partial_H\n",
" * arrow1_1\n",
" * arrow1_2\n",
" * arrow2_1\n",
" * arrow2_2\n",
")\n",
"\n",
"\n",
"joint.opts(\n",
" height=400,\n",
" width=400,\n",
" xlim=(-4, 4),\n",
" ylim=(-4, 4),\n",
" show_grid=True,\n",
" xlabel=\"q\",\n",
" ylabel=\"p\",\n",
")"
]
},
{
"cell_type": "markdown",
"id": "devoted-philip",
"metadata": {},
"source": [
"Now we need to use this multiple times to get multiple samples. At each step we need to sample new momenta, and therefore are following a different trajectory in each step. Therefore, we can distinguish HMC sampling into two distinct phases. First, choosing appropriate momenta and kinetic energies, and them numeric integration of the trajectory. At the end of the trajectory we receive a new sample. Let's take a look at both if these phases and how to do them."
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "adolescent-candy",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/var/folders/j_/c5r9ch0913v3h1w4bdwzm0lh0000gn/T/ipykernel_16373/985606356.py:2: RuntimeWarning: invalid value encountered in sqrt\n",
" return np.sqrt(H - x ** 2)\n"
]
},
{
"data": {},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.holoviews_exec.v0+json": "",
"text/html": [
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"
\n",
"
\n",
""
],
"text/plain": [
":Overlay\n",
" .Scatter.I :Scatter [x] (y)\n",
" .Scatter.II :Scatter [x] (y)\n",
" .VectorField.I :VectorField [x,y] (Angle,Magnitude)\n",
" .Curve.I :Curve [x] (y)\n",
" .Curve.II :Curve [x] (y)\n",
" .Curve.III :Curve [x] (y)\n",
" .Curve.IV :Curve [x] (y)\n",
" .Curve.V :Curve [x] (y)\n",
" .Curve.VI :Curve [x] (y)\n",
" .Curve.VII :Curve [x] (y)\n",
" .Scatter.III :Scatter [x] (y)\n",
" .Scatter.IV :Scatter [x] (y)\n",
" .Curve.VIII :Curve [x] (y)\n",
" .Curve.IX :Curve [x] (y)\n",
" .Curve.X :Curve [x] (y)\n",
" .Curve.XI :Curve [x] (y)\n",
" .Curve.XII :Curve [x] (y)\n",
" .Curve.XIII :Curve [x] (y)\n",
" .Curve.XIV :Curve [x] (y)"
]
},
"execution_count": 9,
"metadata": {
"application/vnd.holoviews_exec.v0+json": {
"id": "2097"
}
},
"output_type": "execute_result"
}
],
"source": [
"H1 = 9\n",
"H2 = 2\n",
"H3 = 4\n",
"\n",
"x_arr1 = np.linspace(-np.sqrt(H1), np.sqrt(H1), 1000)\n",
"x_arr2 = np.linspace(-np.sqrt(H2), np.sqrt(H2), 1000)\n",
"x_arr3 = np.linspace(-np.sqrt(H3), np.sqrt(H3), 1000)\n",
"\n",
"p_plus1 = simple_oscillator(H1, x_arr1)\n",
"p_minus1 = -simple_oscillator(H1, x_arr1)\n",
"p_plus2 = simple_oscillator(H2, x_arr2)\n",
"p_minus2 = -simple_oscillator(H2, x_arr2)\n",
"p_plus3 = simple_oscillator(H3, x_arr3)\n",
"p_minus3 = -simple_oscillator(H3, x_arr3)\n",
"\n",
"scatter1 = hv.Scatter(([x_arr1[100], x_arr1[300]], [p_plus1[100], p_plus1[300]])).opts(\n",
" size=10, color=\"orange\", alpha=0.5\n",
")\n",
"scatter2 = hv.Scatter(([x_arr1[100], x_arr1[300]], [0, 0])).opts(\n",
" size=10, color=\"orange\"\n",
")\n",
"arrow1 = hv.Curve(([x_arr1[100], x_arr1[100]], [0, p_plus1[100] - 0.1])).opts(\n",
" color=\"orange\", alpha=0.5\n",
")\n",
"arrow1_1 = hv.Curve(\n",
" ([x_arr1[100] - 0.1, x_arr1[100]], [p_plus1[100] - 0.2, p_plus1[100] - 0.1])\n",
").opts(color=\"orange\", alpha=0.5)\n",
"arrow1_2 = hv.Curve(\n",
" ([x_arr1[100] + 0.1, x_arr1[100]], [p_plus1[100] - 0.2, p_plus1[100] - 0.1])\n",
").opts(color=\"orange\", alpha=0.5)\n",
"arrow2 = hv.Curve(([x_arr1[300], x_arr1[300]], [0.1, p_plus1[300]])).opts(\n",
" color=\"orange\", alpha=0.5\n",
")\n",
"arrow2_1 = hv.Curve(([x_arr1[300] - 0.1, x_arr1[300]], [0.3, 0.1])).opts(\n",
" color=\"orange\", alpha=0.5\n",
")\n",
"arrow2_2 = hv.Curve(([x_arr1[300] + 0.1, x_arr1[300]], [0.3, 0.1])).opts(\n",
" color=\"orange\", alpha=0.5\n",
")\n",
"partial_H = hv.Curve((x_arr1[100:300], p_plus1[100:300])).opts(\n",
" color=\"orange\", alpha=0.5\n",
")\n",
"\n",
"joint = (\n",
" scatter1\n",
" * scatter2\n",
" * vectorfield\n",
" * arrow1\n",
" * arrow2\n",
" * partial_H\n",
" * arrow1_1\n",
" * arrow1_2\n",
" * arrow2_1\n",
" * arrow2_2\n",
")\n",
"\n",
"scatter12 = hv.Scatter(([x_arr2[79], x_arr2[300]], [p_plus2[79], p_plus2[300]])).opts(\n",
" size=10, color=\"orange\", alpha=0.5\n",
")\n",
"scatter22 = hv.Scatter(([x_arr2[79], x_arr2[300]], [0, 0])).opts(\n",
" size=10, color=\"orange\"\n",
")\n",
"arrow12 = hv.Curve(([x_arr2[79], x_arr2[79]], [0, p_plus2[79] - 0.1])).opts(\n",
" color=\"orange\", alpha=0.5\n",
")\n",
"arrow1_12 = hv.Curve(\n",
" ([x_arr2[79] - 0.1, x_arr2[79]], [p_plus2[79] - 0.1, p_plus2[79] - 0.1])\n",
").opts(color=\"orange\", alpha=0.5)\n",
"arrow1_22 = hv.Curve(\n",
" ([x_arr2[79] + 0.1, x_arr2[79]], [p_plus2[79] - 0.1, p_plus2[79] - 0.1])\n",
").opts(color=\"orange\", alpha=0.5)\n",
"arrow22 = hv.Curve(([x_arr2[300], x_arr2[300]], [0.1, p_plus2[300]])).opts(\n",
" color=\"orange\", alpha=0.5\n",
")\n",
"arrow2_12 = hv.Curve(([x_arr2[300] - 0.1, x_arr2[300]], [0.2, 0.1])).opts(\n",
" color=\"orange\", alpha=0.5\n",
")\n",
"arrow2_22 = hv.Curve(([x_arr2[300] + 0.1, x_arr2[300]], [0.2, 0.1])).opts(\n",
" color=\"orange\", alpha=0.5\n",
")\n",
"partial_H2 = hv.Curve((x_arr2[79:300], p_plus2[79:300])).opts(color=\"orange\", alpha=0.5)\n",
"\n",
"joint = (\n",
" joint\n",
" * scatter12\n",
" * scatter22\n",
" * arrow12\n",
" * arrow22\n",
" * partial_H2\n",
" * arrow1_12\n",
" * arrow1_22\n",
" * arrow2_12\n",
" * arrow2_22\n",
")\n",
"\n",
"\n",
"joint.opts(\n",
" height=400,\n",
" width=400,\n",
" xlim=(-4, 4),\n",
" ylim=(-4, 4),\n",
" show_grid=True,\n",
" xlabel=\"q\",\n",
" ylabel=\"p\",\n",
")"
]
},
{
"cell_type": "markdown",
"id": "accredited-unemployment",
"metadata": {},
"source": [
"## Choosing Kinetic Energy (Euclidean-Gaussian)\n",
"\n",
"Here we briefly discuss one of the proposed ways to choose kinetic energies. The sample space is connected to a so called *metric* $g$, which tells us how we can measure distance in that space. For example, the metric you probably know is the so called Euclidean metric, in which the distance is given as the length of the vector connecting two points in space,\n",
"\n",
"\\begin{align}\n",
"d(q, q^\\prime) = \\sqrt{\\sum_i \\left(q_i - q^\\prime_i\\right)^2},\n",
"\\end{align}\n",
"\n",
"which we can also write as \n",
"\n",
"\\begin{align}\n",
"d(q, q^\\prime)^2 = (q-q^\\prime)^\\mathsf{T} \\cdot \\mathsf{g} \\cdot (q-q^\\prime),\n",
"\\end{align}\n",
"\n",
"where $\\mathsf{g}$ is \n",
"\n",
"\\begin{align}\n",
"\\mathsf{g} = \\begin{pmatrix}\n",
"1 & 0 & 0\\\\\n",
"0 & 1 & 0\\\\\n",
"0 & 0 & 1\n",
"\\end{pmatrix}.\n",
"\\end{align}\n",
"\n",
"In general we can modify the metric by scaling and rotation, without changing the rank order (meaning if one distance is larger than another in one parameterization, it will always stay larger after transforming the metric) or disrupting Hamilton's equations. I will denote $\\mathsf{M}$ as a general metric that can be obtained by rotating and scaling the original metric. The metric in parameter space defines a metric in momentum space, which is just the inverse metric $\\mathsf{M}^{-1}$,\n",
"\n",
"\\begin{align}\n",
"d(p, p^\\prime)^2 = (p-p^\\prime)^\\mathsf{T} \\cdot \\mathsf{M}^{-1}\\cdot (p-p^\\prime).\n",
"\\end{align}\n",
"\n",
"This lets us choose a kinetic energy which is simply the squared distance (plus some extra terms regarding normalization which becomes clear in the next step),\n",
"\n",
"\\begin{align}\n",
"K(q,p) = \\frac{1}{2} p^\\mathsf{T}\\cdot \\mathsf{M}^{-1} \\cdot p + \\log\\left(\\mathrm{det} \\,\\mathsf{M}\\right) + \\mathrm{const.}\n",
"\\end{align}\n",
"\n",
"Then, the conditional probability is simply a centered Multivariate normal with covariance matrix $\\mathsf{M}^{-1}$ (this is why we included the extra terms in the kinetic energy),\n",
"\n",
"\\begin{align}\n",
"\\pi (p\\mid q) = \\text{Norm}(p \\mid 0, \\mathsf{M})\n",
"\\end{align}\n",
"\n",
"Without going too much into detail, if the covariance matrix $\\mathsf{M}$ resembles the covariance of the posterior distribution, then we achieve minimal correlation of the posterior distribution, and therefore giving us more independent samples. Therefore, one job of the warm-up steps is to explore the posterior distribution and explore its covariance. The metric is updated iteratively to achieve an optimal guess of the covariance. This is one of the reasons that you might need to increase the number of warm-up steps for more complicated posteriors, since it takes more steps to accurately determine the covariance. Once we have a good choice of the metric, we can quickly explore the posterior using Hamilton's equations."
]
},
{
"cell_type": "markdown",
"id": "bearing-indicator",
"metadata": {},
"source": [
"## A short note on integration times\n",
"\n",
"Finding the optimal time for how long we integrate Hamilton's equations is not trivial; however, the idea is quite simple. If the integration time is too large, then we do not obtain new information, since we likely get samples from multiple laps through the trajectory. In the example above (becomes more obvious when you look at the animation), we just start doing multiple laps in the same circle, therefore not exploring anything we have not explored before. However, if we choose an integration time that is too short, then we might not sample the entire trajectory, and are missing some information that would be easily obtained by integrating longer. So in this context, the optimal integration time would be to follow the circle for exactly one lap, and then choose a new momentum, and explore the new circle. For more complicated trajectories, it is not as simple as \"doing one lap\" since we might return to an area close to the origin of our trajectory, just to head off to a totally unexplored area (imagine a trajectory formed like an 8). One way around that is to use a so called *No U-Turn Sampler*, short NUTS, which integrates the trajectory both forward and backwards in time, until a certain condition is met, that there is a U-turn at the ends of the forward and backward trajectory. Then we are sure that we explored one lap of trajectory, and take a random point from this trajectory as a sample. This sample is then taken as initial point for the next step."
]
},
{
"cell_type": "markdown",
"id": "dangerous-style",
"metadata": {},
"source": [
"## Numerical integration and what happens in divergences\n",
"\n",
"As many of you know, numeric integrators are not not perfect. They usually diverge from the actual solution the farther you integrate away from the initial condition. For example, below is shown the forward Euler method applied to an exponential function. We do not need to go into details of this method, but the problem is that due to numerical inaccuracies and that numerical integration has a discrete step size, there is a small deviation from the exact solution at each step. These errors can add up, and if we integrate for too long, then the numeric solution can vary drastically."
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "beginning-suggestion",
"metadata": {},
"outputs": [
{
"data": {},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.holoviews_exec.v0+json": "",
"text/html": [
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"
\n",
"
\n",
""
],
"text/plain": [
":Overlay\n",
" .Curve.Exact_Solution :Curve [x] (y)\n",
" .Curve.Euler_method :Curve [x] (y)"
]
},
"execution_count": 10,
"metadata": {
"application/vnd.holoviews_exec.v0+json": {
"id": "2955"
}
},
"output_type": "execute_result"
}
],
"source": [
"# credit to: https://stackoverflow.com/a/33601089\n",
"\n",
"# Concentration over time\n",
"N = lambda t: N0 * np.exp(k * t)\n",
"# dN/dt\n",
"def dx_dt(x):\n",
" return k * x\n",
"\n",
"k = .5\n",
"h = 0.5\n",
"N0 = 100.\n",
"\n",
"t = np.arange(0, 10, h)\n",
"y = np.zeros(len(t))\n",
"\n",
"y[0] = N0\n",
"for i in range(1, len(t)):\n",
" # Euler's method\n",
" y[i] = y[i-1] + dx_dt(y[i-1]) * h\n",
" \n",
"exact = hv.Curve((t, N(t)), label=\"Exact Solution\")\n",
"approx = hv.Curve((t, y), label=\"Euler method\").opts(color=\"orange\")\n",
"\n",
"exact * approx"
]
},
{
"cell_type": "markdown",
"id": "structural-exhibition",
"metadata": {},
"source": [
"When we do numerical integration on Hamilton's equations, we can abuse the fact that the energy is conserved along the trajectory and the volume of phase space is conserved (if you do not understand what it means when \"volume is conserved\", that is not a problem for this notebook. The interested can look up [Liouville's theorem](https://en.wikipedia.org/wiki/Liouville%27s_theorem_(Hamiltonian)), which is definitely worth a read since it is one of the key concepts in Hamilton Mechanics). Then, the numeric integration will always go back to the true solution and will oscillate around it. These types of integrators is called *symplectic integrators*. \n",
"\n",
"However, these small deviations can be detrimental in regions where the Hamiltonian has high curvature, meaning the gradient changes quite strongly in a small interval. Then, the small deviation of the numerical integrator can have catastrophic effects, and will lead to the trajectory completely shooting off into infinity. (Imagine you are on a bridge. If you are in the center of the bridge, and you make a small deviation from your trajectory, will be still on the bridge and correcting your trajectory will be quite easy. However, if you are the edge of the bridge close to the railing, a small deviation can lead to falling of the bridge. This would be called a divergence, and you end up as an orange dot in someone's corner plot.)\n",
"\n",
"Therefore, warm-up steps are very important do get a well behaving chain in the posterior. Also, as you have seen earlier in the class, divergences can be fought off by increasing the `adapt_delta`. This is effectively decreasing the step size of the integrator. While this will increase the time it takes to explore the posterior (smaller steps => more steps to explore the same distance), this increased time might be worth it if the chain can avoid divergences."
]
},
{
"cell_type": "markdown",
"id": "comprehensive-princeton",
"metadata": {},
"source": [
"## Computing Environment"
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "inside-arlington",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Python implementation: CPython\n",
"Python version : 3.9.7\n",
"IPython version : 7.29.0\n",
"\n",
"numpy : 1.20.3\n",
"scipy : 1.7.3\n",
"bokeh : 2.3.3\n",
"holoviews : 1.14.6\n",
"jupyterlab: 3.2.1\n",
"\n"
]
}
],
"source": [
"%load_ext watermark\n",
"%watermark -v -p numpy,scipy,bokeh,holoviews,jupyterlab"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.7"
}
},
"nbformat": 4,
"nbformat_minor": 5
}