Schedule

Lab 0
Complete Tutorial 0: Setting up a Python distribution for scientific computing before our first meeting.
Lab 1
(M 09/29) Introduction to Python / Loading and displaying data (data set)
Lecture 1
(W 10/01) Bayes's theorem, probability and the logic of science, intro to parameter estimation
Lab 2
(M 10/06) Managing data sets / Defining parameters and estimating them (data set)
Lecture 2
(W 10/08) Parameter estimation
Lab 3
(M 10/13) Model generation and checking / Linear regression (data)
Lecture 3
(W 10/15) Model selection
Lab
(M 10/20) Cancelled due to instructor illness
Lecture 4
(W 10/22) Intro to Markov chain Monte Carlo
Lab 4
(M 10/27) Nonlinear regression / Model selection (data set 1, data set 2)
Lecture 5
(W 10/29) Probability distributions and their meaning
Lab 5
(M 11/03) Outlier detection / Data smoothing ( data set)
Lecture 6
(W 11/05) Smoothing methods and non-Gaussian likelihoods
Lab 6
(M 11/10) Prepping images / A case study in FRAP (data set sent via Dropbox)
Lecture 7
(W 11/12) Guest lecture: Jin Park, Elowitz Lab
Lab 7
(M 11/17) Basic filtering and thresholding / Segmentation (data sent via Dropbox)
Lecture 8
(W 11/19) Error bars and model selection from MCMC calculations
Lab 8
(M 11/24) Particle tracking / Cross correlation and PIV (data set)
Lecture 9
(W 11/26) Error propagation / Overview of data analysis tools
Lab 9
(M 12/01) Colocalization (data set)
Lecture 10
(W 12/03) Course recap and wrap-up