For convenience, below are links to course documents. Timing and topics of recitation lessons are tentative and subject to change.
Tutorials
- Tutorial 0a
- [Before first class] Setting up a Python environment for scientific computing
- Tutorial 0b
- [Before first homework] Introduction to Jupyter notebooks
- Tutorial 0c
- [Before first homework] Introduction to LaTeX
- Tutorial 0d
- [Before first homework] A sample homework problem and solution
- Tutorial 1a
- [10/01] Dataframes (data set)
- Tutorial 1b
- [10/01] Plotting (data set)
- Tutorial 2a
- [10/08] Tidy data and split-apply-combine (data set)
- Tutorial 2b
- [10/08] Exploratory data analysis (data set 1, data set 2)
- T2 exercise
- [10/08] (data set), solution
- Tutorial 3a
- [10/15] Data validation (data set 1, data set 2)
- Tutorial 3b
- [10/15] Extracting information from images (data set)
- Tutorial 3c
- [10/15] Probability distributions and their meanings
- T3 exercise
- [10/15] solution
- Tutorial 4a
- [10/22] Image segmentation I (data set)
- Tutorial 4b
- [10/22] Image segmentation II (data set)
- T4 exercise
- [10/22] solution
- Tutorial 5a
- [10/29] Generative models and random number generation (data set)
- Tutorial 5b
- [10/29] Resampling methods (data set)
- T5 exercise
- [10/29] solution
- Tutorial 6a
- [11/05] Construction of generative models/prior predictive checks
- Tutorial 6b
- [11/05] Brute force posterior evaluation and parameter estimation by optimization
- T6 exercise
- [11/05]
- Tutorial 7a
- [11/12] Parameter estimation by Markov chain Monte Carlo
- Tutorial 7b
- [11/12] Display of MCMC results
- T7 exercise
- [11/12]
- Tutorial 8a
- [11/19] MCMC diagnostics
- Tutorial 8b
- [11/19] Hierarchical models and noncentered distributions
- T8 exercise
- [11/19]
- Tutorial 9a
- [11/26] Posterior predictive checks
- Tutorial 9b
- [11/26] Model comparison
- Tutorial 10a
- [12/03] Outliers
- Tutorial 10b
- [12/03] Simulation-based calibration
- T10 exercise
- [12/03]
Lecture notes
- Lec 1
- (W 10/03) Introduction to probability
- Lec 2
- (W 10/10) Good data storage and sharing practices (guest lecture from Tom Morrell)
- Lec 3
- (W 10/17) Introduction to images (data set)
- Lec 4
- (W 10/24) Confidence intervals, hypothesis testing, and nonparametric frequentist methods
- Lec 5
- (W 10/31) Introduction to Bayesian modeling
- Lec 6
- (W 11/07) Markov chain Monte Carlo
- Lec 7
- (W 11/14) Hierarchical models (notebook)
- Lec 8
- (W 11/21) Model comparison
- Lec 9
- (W 11/28) Statistical pitfalls (Dance of the p-values, Nonidentifiability)
- Lec 10
- (W 12/05) Course recap and wrap-up
Recitation lessons
- Rec 1
- (Th 10/04) Git/GitHub tips (JW)
- Rec 2
- (Th 10/11) The importance of style (JC)
- Rec 3
- (Th 10/18) Review of probability (CS)
- Rec 4
- (Th 10/25) Cloud computing with AWS (post-setup instructions for EC2 use) (SM and JW)
- Rec 5
- (Th 11/01) Colocalization (SM)
- Rec 6
- (Th 11/08) Review of generative modeling [solutions]
- Rec 7
- (Th 11/15) Revisiting Bayesian model building (JW and JC) [solutions]
- Rec 8
- (Th 11/29) Review of hierarchical modeling [solution]
Homeworks
- HW 1
- due 1pm, Oct. 7 (data set) [solutions]
- HW 2
- due 1pm, Oct. 14 [solutions]
- HW 3
- due 1pm, Oct. 21 (data set 1, data set 2) [solutions]
- HW 4
- due 1pm, Oct. 28 (data set 1, data set 2) [solutions]
- HW 5
- due 1pm, Nov. 4 (data set 1, data set 2, data set 3) [solutions]
- HW 6
- due 1pm, Nov. 18 [solutions]
- HW 7
- due 10am, Nov. 21 [solutions]
- HW 8
- due 1pm, Dec. 2 [solutions]
- HW 9
- due 1pm, Dec. 11 [data set, results from HW4 (only use if your own results for HW4 are unusable)] [solutions]
- HW 10
- due 1pm, Dec. 14
- HW 11
- due 1pm, Dec. 14 [solutions]