Document center

For convenience, below are links to course documents. Timing and topics of recitation lessons are tentative and subject to change.


Tutorials

Tutorial 0a
[Before first class] Setting up a Python environment for scientific computing
Tutorial 0b
[Before first homework] Introduction to Jupyter notebooks
Tutorial 0c
[Before first homework] Introduction to LaTeX
Tutorial 0d
[Before first homework] A sample homework problem and solution

Tutorial 1a
[10/01] Dataframes (data set)
Tutorial 1b
[10/01] Plotting (data set)

Tutorial 2a
[10/08] Tidy data and split-apply-combine (data set)
Tutorial 2b
[10/08] Exploratory data analysis (data set 1, data set 2)
T2 exercise
[10/08] (data set), solution

Tutorial 3a
[10/15] Data validation (data set 1, data set 2)
Tutorial 3b
[10/15] Extracting information from images (data set)
Tutorial 3c
[10/15] Probability distributions and their meanings
T3 exercise
[10/15] solution

Tutorial 4a
[10/22] Image segmentation I (data set)
Tutorial 4b
[10/22] Image segmentation II (data set)
T4 exercise
[10/22] solution

Tutorial 5a
[10/29] Generative models and random number generation (data set)
Tutorial 5b
[10/29] Resampling methods (data set)
T5 exercise
[10/29] solution

Tutorial 6a
[11/05] Construction of generative models/prior predictive checks
Tutorial 6b
[11/05] Brute force posterior evaluation and parameter estimation by optimization
T6 exercise
[11/05]

Tutorial 7a
[11/12] Parameter estimation by Markov chain Monte Carlo
Tutorial 7b
[11/12] Display of MCMC results
T7 exercise
[11/12]

Tutorial 8a
[11/19] MCMC diagnostics
Tutorial 8b
[11/19] Hierarchical models and noncentered distributions
T8 exercise
[11/19]

Tutorial 9a
[11/26] Posterior predictive checks
Tutorial 9b
[11/26] Model comparison

Tutorial 10a
[12/03] Outliers
Tutorial 10b
[12/03] Simulation-based calibration
T10 exercise
[12/03]

Lecture notes

Lec 1
(W 10/03) Introduction to probability
Lec 2
(W 10/10) Good data storage and sharing practices (guest lecture from Tom Morrell)
Lec 3
(W 10/17) Introduction to images (data set)
Lec 4
(W 10/24) Confidence intervals, hypothesis testing, and nonparametric frequentist methods
Lec 5
(W 10/31) Introduction to Bayesian modeling
Lec 6
(W 11/07) Markov chain Monte Carlo
Lec 7
(W 11/14) Hierarchical models (notebook)
Lec 8
(W 11/21) Model comparison
Lec 9
(W 11/28) Statistical pitfalls (Dance of the p-values, Nonidentifiability)
Lec 10
(W 12/05) Course recap and wrap-up

Recitation lessons

Rec 1
(Th 10/04) Git/GitHub tips (JW)
Rec 2
(Th 10/11) The importance of style (JC)
Rec 3
(Th 10/18) Review of probability (CS)
Rec 4
(Th 10/25) Cloud computing with AWS (post-setup instructions for EC2 use) (SM and JW)
Rec 5
(Th 11/01) Colocalization (SM)
Rec 6
(Th 11/08) Review of generative modeling [solutions]
Rec 7
(Th 11/15) Revisiting Bayesian model building (JW and JC) [solutions]
Rec 8
(Th 11/29) Review of hierarchical modeling [solution]

Homeworks

HW 1
due 1pm, Oct. 7 (data set) [solutions]
HW 2
due 1pm, Oct. 14 [solutions]
HW 3
due 1pm, Oct. 21 (data set 1, data set 2) [solutions]
HW 4
due 1pm, Oct. 28 (data set 1, data set 2) [solutions]
HW 5
due 1pm, Nov. 4 (data set 1, data set 2, data set 3) [solutions]
HW 6
due 1pm, Nov. 18 [solutions]
HW 7
due 10am, Nov. 21 [solutions]
HW 8
due 1pm, Dec. 2 [solutions]
HW 9
due 1pm, Dec. 11 [data set, results from HW4 (only use if your own results for HW4 are unusable)] [solutions]
HW 10
due 1pm, Dec. 14
HW 11
due 1pm, Dec. 14 [solutions]